Your browser doesn't support javascript.
loading
Predicting pharmaceutical inkjet printing outcomes using machine learning.
Carou-Senra, Paola; Ong, Jun Jie; Castro, Brais Muñiz; Seoane-Viaño, Iria; Rodríguez-Pombo, Lucía; Cabalar, Pedro; Alvarez-Lorenzo, Carmen; Basit, Abdul W; Pérez, Gilberto; Goyanes, Alvaro.
Afiliação
  • Carou-Senra P; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Spain.
  • Ong JJ; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
  • Castro BM; IRLab, CITIC Research Center, Department of Computer Science, University of A Coruña, Spain.
  • Seoane-Viaño I; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
  • Rodríguez-Pombo L; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Spain.
  • Cabalar P; IRLab, Department of Computer Science, University of A Coruña, Spain.
  • Alvarez-Lorenzo C; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Spain.
  • Basit AW; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
  • Pérez G; FabRx Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK.
  • Goyanes A; IRLab, CITIC Research Center, Department of Computer Science, University of A Coruña, Spain.
Int J Pharm X ; 5: 100181, 2023 Dec.
Article em En | MEDLINE | ID: mdl-37143957
Inkjet printing has been extensively explored in recent years to produce personalised medicines due to its low cost and versatility. Pharmaceutical applications have ranged from orodispersible films to complex polydrug implants. However, the multi-factorial nature of the inkjet printing process makes formulation (e.g., composition, surface tension, and viscosity) and printing parameter optimization (e.g., nozzle diameter, peak voltage, and drop spacing) an empirical and time-consuming endeavour. Instead, given the wealth of publicly available data on pharmaceutical inkjet printing, there is potential for a predictive model for inkjet printing outcomes to be developed. In this study, machine learning (ML) models (random forest, multilayer perceptron, and support vector machine) to predict printability and drug dose were developed using a dataset of 687 formulations, consolidated from in-house and literature-mined data on inkjet-printed formulations. The optimized ML models predicted the printability of formulations with an accuracy of 97.22%, and predicted the quality of the prints with an accuracy of 97.14%. This study demonstrates that ML models can feasibly provide predictive insights to inkjet printing outcomes prior to formulation preparation, affording resource- and time-savings.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article