Your browser doesn't support javascript.
loading
Ferricyanide photo-aquation pathway revealed by combined femtosecond Kß main line and valence-to-core x-ray emission spectroscopy.
Reinhard, Marco; Gallo, Alessandro; Guo, Meiyuan; Garcia-Esparza, Angel T; Biasin, Elisa; Qureshi, Muhammad; Britz, Alexander; Ledbetter, Kathryn; Kunnus, Kristjan; Weninger, Clemens; van Driel, Tim; Robinson, Joseph; Glownia, James M; Gaffney, Kelly J; Kroll, Thomas; Weng, Tsu-Chien; Alonso-Mori, Roberto; Sokaras, Dimosthenis.
Afiliação
  • Reinhard M; SLAC National Accelerator Laboratory, Menlo Park, CA, USA. marcor@slac.stanford.edu.
  • Gallo A; SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Guo M; SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Garcia-Esparza AT; SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Biasin E; Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
  • Qureshi M; SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Britz A; SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Ledbetter K; Department of Physics, Stanford University, Stanford, CA, USA.
  • Kunnus K; Department of Physics, Harvard University, Cambridge, MA, USA.
  • Weninger C; SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • van Driel T; SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Robinson J; MAX IV Laboratory, Lund University, Lund, Sweden.
  • Glownia JM; SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Gaffney KJ; SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Kroll T; SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Weng TC; SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Alonso-Mori R; SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Sokaras D; School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
Nat Commun ; 14(1): 2443, 2023 May 05.
Article em En | MEDLINE | ID: mdl-37147295
ABSTRACT
Reliably identifying short-lived chemical reaction intermediates is crucial to elucidate reaction mechanisms but becomes particularly challenging when multiple transient species occur simultaneously. Here, we report a femtosecond x-ray emission spectroscopy and scattering study of the aqueous ferricyanide photochemistry, utilizing the combined Fe Kß main and valence-to-core emission lines. Following UV-excitation, we observe a ligand-to-metal charge transfer excited state that decays within 0.5 ps. On this timescale, we also detect a hitherto unobserved short-lived species that we assign to a ferric penta-coordinate intermediate of the photo-aquation reaction. We provide evidence that bond photolysis occurs from reactive metal-centered excited states that are populated through relaxation of the charge transfer excited state. Beyond illuminating the elusive ferricyanide photochemistry, these results show how current limitations of Kß main line analysis in assigning ultrafast reaction intermediates can be circumvented by simultaneously using the valence-to-core spectral range.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article