Spatially explicit effective reproduction numbers from incidence and mobility data.
Proc Natl Acad Sci U S A
; 120(20): e2219816120, 2023 05 16.
Article
em En
| MEDLINE
| ID: mdl-37159476
Current methods for near real-time estimation of effective reproduction numbers from surveillance data overlook mobility fluxes of infectors and susceptible individuals within a spatially connected network (the metapopulation). Exchanges of infections among different communities may thus be misrepresented unless explicitly measured and accounted for in the renewal equations. Here, we first derive the equations that include spatially explicit effective reproduction numbers, âk(t), in an arbitrary community k. These equations embed a suitable connection matrix blending mobility among connected communities and mobility-related containment measures. Then, we propose a tool to estimate, in a Bayesian framework involving particle filtering, the values of âk(t) maximizing a suitable likelihood function reproducing observed patterns of infections in space and time. We validate our tools against synthetic data and apply them to real COVID-19 epidemiological records in a severely affected and carefully monitored Italian region. Differences arising between connected and disconnected reproduction numbers (the latter being calculated with existing methods, to which our formulation reduces by setting mobility to zero) suggest that current standards may be improved in their estimation of disease transmission over time.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
COVID-19
Tipo de estudo:
Incidence_studies
/
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article