Your browser doesn't support javascript.
loading
Spatially explicit effective reproduction numbers from incidence and mobility data.
Trevisin, Cristiano; Bertuzzo, Enrico; Pasetto, Damiano; Mari, Lorenzo; Miccoli, Stefano; Casagrandi, Renato; Gatto, Marino; Rinaldo, Andrea.
Afiliação
  • Trevisin C; Laboratory of Ecohydrology, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
  • Bertuzzo E; Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari Venezia, Venezia 30172, Italy.
  • Pasetto D; Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari Venezia, Venezia 30172, Italy.
  • Mari L; Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy.
  • Miccoli S; Dipartimento di Meccanica, Politecnico di Milano, Milano 20133, Italy.
  • Casagrandi R; Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy.
  • Gatto M; Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy.
  • Rinaldo A; Laboratory of Ecohydrology, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.
Proc Natl Acad Sci U S A ; 120(20): e2219816120, 2023 05 16.
Article em En | MEDLINE | ID: mdl-37159476
Current methods for near real-time estimation of effective reproduction numbers from surveillance data overlook mobility fluxes of infectors and susceptible individuals within a spatially connected network (the metapopulation). Exchanges of infections among different communities may thus be misrepresented unless explicitly measured and accounted for in the renewal equations. Here, we first derive the equations that include spatially explicit effective reproduction numbers, ℛk(t), in an arbitrary community k. These equations embed a suitable connection matrix blending mobility among connected communities and mobility-related containment measures. Then, we propose a tool to estimate, in a Bayesian framework involving particle filtering, the values of ℛk(t) maximizing a suitable likelihood function reproducing observed patterns of infections in space and time. We validate our tools against synthetic data and apply them to real COVID-19 epidemiological records in a severely affected and carefully monitored Italian region. Differences arising between connected and disconnected reproduction numbers (the latter being calculated with existing methods, to which our formulation reduces by setting mobility to zero) suggest that current standards may be improved in their estimation of disease transmission over time.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: COVID-19 Tipo de estudo: Incidence_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: COVID-19 Tipo de estudo: Incidence_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article