Your browser doesn't support javascript.
loading
Complexation with Polysaccharides Enhances the Stability of Isolated Anthocyanins.
Fu, Wenyi; Li, Shiyu; Helmick, Harrison; Hamaker, Bruce R; Kokini, Jozef L; Reddivari, Lavanya.
Afiliação
  • Fu W; Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
  • Li S; Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
  • Helmick H; Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
  • Hamaker BR; Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
  • Kokini JL; Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
  • Reddivari L; Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
Foods ; 12(9)2023 Apr 29.
Article em En | MEDLINE | ID: mdl-37174384
Isolated anthocyanins have limited colonic bioavailability due to their instability as free forms. Thus, many methods have been fabricated to increase the stability of anthocyanins. Complexation, encapsulation, and co-pigmentation with other pigments, proteins, metal ions, and carbohydrates have been reported to improve the stability and bioavailability of anthocyanins. In this study, anthocyanins extracted from purple potatoes were complexed with four different polysaccharides and their mixture. The anthocyanin-polysaccharide complexes were characterized using a zeta potential analyzer, particle size analyzer, scanning electron microscopy, and Fourier-transform infrared spectroscopy. Complexes were subjected to simulated digestion for assessing the stability of anthocyanins. Furthermore, complexes were subjected to different pH conditions and incubated at high temperatures to monitor color changes. A Caco-2 cell monolayer was used to evaluate the colonic concentrations of anthocyanins. In addition, the bioactivity of complexes was assessed using LPS-treated Caco-2 cell monolayer. Results show that pectin had the best complexation capacity with anthocyanins. The surface morphology of the anthocyanin-pectin complex (APC) was changed after complexation. APC was more resistant to the simulated upper gastrointestinal digestion, and high pH and temperature conditions for a longer duration. Furthermore, APC restored the lipopolysaccharide (LPS)-induced high cell permeability compared to isolated anthocyanins. In conclusion, complexation with pectin increased the stability and colonic bioavailability and the activity of anthocyanins.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article