Your browser doesn't support javascript.
loading
Flavor characteristics of peeled walnut kernels under two-steps roasting processes.
Jia, Yimin; Yuan, Binhong; Yang, Yini; Zheng, Chang; Zhou, Qi.
Afiliação
  • Jia Y; Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062
  • Yuan B; Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062
  • Yang Y; Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062
  • Zheng C; Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062
  • Zhou Q; Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062
Food Chem ; 423: 136290, 2023 Oct 15.
Article em En | MEDLINE | ID: mdl-37178596
ABSTRACT
Currently, the effects of roasting methods on the flavor profile of peeled walnut kernels (PWKs) remain unknown. The effects of hot air binding (HAHA), radio frequency (HARF), and microwave irradiation (HAMW) on PWK were evaluated using olfactory, sensory, and textural techniques. Solvent Assisted Flavor Evaporation-Gas Chromatography-Olfactometry (SAFE-GC-O) identified 21 odor-active compounds with total concentrations of 229 µg/kg, 273 µg/kg and 499 µg/kg due to HAHA, HARF, and HAMW, respectively. HAMW exhibited the most prominent nutty taste, with the highest response among roasted milky sensors with the typical aroma of 2-ethyl-5-methylpyrazine. HARF had the highest values for chewiness (5.83 N·mm) and brittleness (0.68 mm); however, these attributes did not contribute to the flavor profile. The partial least squares regression (PLSR) model and VIP values showed 13 odor-active compounds were responsible for the sensory differences from different processes. The two-step treatment with HAMW improved the flavor quality of PWK.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Juglans / Compostos Orgânicos Voláteis Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Juglans / Compostos Orgânicos Voláteis Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article