Your browser doesn't support javascript.
loading
Cortical Layer Markers Expression and Increased Synaptic Density in Interstitial Neurons of the White Matter from Drug-Resistant Epilepsy Patients.
Yang, Jiachao; Wang, Mi; Lv, Yang; Chen, Jiadong.
Afiliação
  • Yang J; Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
  • Wang M; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou 310058, China.
  • Lv Y; Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
  • Chen J; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou 310058, China.
Brain Sci ; 13(4)2023 Apr 06.
Article em En | MEDLINE | ID: mdl-37190591
The interstitial neurons in the white matter of the human and non-human primate cortex share a similar developmental origin with subplate neurons and deep-layer cortical neurons. A subset of interstitial neurons expresses the molecular markers of subplate neurons, but whether interstitial neurons express cortical layer markers in the adult human brain remains unexplored. Here we report the expression of cortical layer markers in interstitial neurons in the white matter of the adult human brain, supporting the hypothesis that interstitial neurons could be derived from cortical progenitor cells. Furthermore, we found increased non-phosphorylated neurofilament protein (NPNFP) expression in interstitial neurons in the white matter of drug-resistant epilepsy patients. We also identified the expression of glutamatergic and g-aminobutyric acid (GABAergic) synaptic puncta that were distributed in the perikarya and dendrites of interstitial neurons. The density of glutamatergic and GABAergic synaptic puncta was increased in interstitial neurons in the white matter of drug-resistant epilepsy patients compared with control brain tissues with no history of epilepsy. Together, our results provide important insights of the molecular identity of interstitial neurons in the adult human white matter. Increased synaptic density of interstitial neurons could result in an imbalanced synaptic network in the white matter and participate as part of the epileptic network in drug-resistant epilepsy.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article