Your browser doesn't support javascript.
loading
Goats with low levels of AAV antibody may serve as candidates for large animal gene therapy.
Pan, Huirong; Liu, Yu-Fen; Luo, Yuting; Chen, Lili; Shen, Bingyan; Song, Shihan; Liu, Mingyue; Wang, Zhuowei; Wu, Wencan; Li, Mengyun; Zhang, Yikui.
Afiliação
  • Pan H; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
  • Liu YF; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
  • Luo Y; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
  • Chen L; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
  • Shen B; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
  • Song S; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
  • Liu M; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
  • Wang Z; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
  • Wu W; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China. Electronic address: wuwencan@wmu.edu.cn.
  • Li M; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; Shaoxing People's Hospital, Shaoxing, 312000, China. Electronic address: 252926421@qq.com.
  • Zhang Y; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China. Electronic address: zhang.yikui@wmu.edu.cn.
Exp Eye Res ; 233: 109514, 2023 08.
Article em En | MEDLINE | ID: mdl-37207869
ABSTRACT
AAV vector-mediated gene therapy has been proposed as a feasible strategy for several eye diseases. However, AAV antibodies in the serum prior to treatment hinder the transduction efficiency and thus the therapeutic effect. Therefore, it is necessary to evaluate AAV antibodies in the serum before gene therapy. As large animals, goats are more closely related to humans than rodents and more economically available than nonhuman primates. Here, we first evaluated the AAV2 antibody serum level in rhesus monkeys before AAV injection. Then, we optimized a cell-based neutralizing antibody assay for detecting AAV antibodies in the serum of Saanen goats and evaluated the consistency of the cell-based neutralizing antibody assay and ELISA for goat serum antibody evaluation. The cell-based neutralizing antibody assay showed that the percentage of macaques with low antibody levels was 42.86%; however, there were no macaques with low antibody levels when the serum was evaluated by ELISA. The proportion of goats with low antibody levels was 56.67% according to the neutralizing antibody assay and 33. 33% according to the ELISA, and McNemar's test showed that the results of the two assays were not significantly different (P = 0.754), but that their consistency is poor (Kappa = 0.286, P = 0.114). Moreover, longitudinal evaluation of serum antibodies before and after intravitreal injection of AAV2 in goats revealed that the level of AAV antibodies increased and transduction inhibition subsequently increased, as reported in humans, indicating that transduction inhibition should be taken into account at different stages of gene therapy. In summary, starting with an evaluation of monkey serum antibodies, we optimized a detection method of goat serum antibodies, providing an alternative large animal model for gene therapy, and our serum antibody measurement method may be applied to other large animals.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cabras / Anticorpos Neutralizantes Limite: Animals / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cabras / Anticorpos Neutralizantes Limite: Animals / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article