Your browser doesn't support javascript.
loading
Single-layer HNb3O8 with strong and nearby Lewis and Brønsted acid sites boosts amide bond hydrolysis for urease mimicking.
Sun, Guohan; Yuan, Bo; Wu, Xinyu; Lau, Shun Ying; Tian, Linyuan; Lee, Jung-Hoon; Nakagawa, Keizo; Peng, Yung-Kang.
Afiliação
  • Sun G; Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR. ykpeng@cityu.edu.hk.
  • Yuan B; Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR. ykpeng@cityu.edu.hk.
  • Wu X; Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR. ykpeng@cityu.edu.hk.
  • Lau SY; Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR. ykpeng@cityu.edu.hk.
  • Tian L; Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR. ykpeng@cityu.edu.hk.
  • Lee JH; Department of Chemistry, Soonchunhyang University, Asan, Korea.
  • Nakagawa K; Research Center for Membrane and Film Technology, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.
  • Peng YK; Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR. ykpeng@cityu.edu.hk.
Nanoscale ; 15(22): 9752-9758, 2023 Jun 08.
Article em En | MEDLINE | ID: mdl-37219043
Urea pollution is a growing environmental concern, and its removal via catalytic hydrolysis is challenging due to the resonance-stabilized amide bonds. In nature, this reaction is catalyzed by ureases in many soil bacteria. However, the remedy of this problem with natural enzymes is not feasible as they are easily denatured and require high costs for both preparation and storage. Given this, the development of nanomaterials bearing enzyme-like activity (nanozymes) with advantages such as low production cost, simple storage, and pH/thermal stability has attracted much attention over the past decade. As inspired by the mechanism of urease-catalyzed urea hydrolysis, the co-presence of Lewis acid (LA) and Brønsted acid (BA) sites is imperative to proceed with this reaction. Herein, layered HNb3O8 samples with intrinsic BA sites were adopted for investigation. The layer reduction of this material to few-/single layers can expose Nb sites with various LA strengths depending on the degree of NbO6 distortion. Among the catalysts examined, single-layer HNb3O8 bearing strong LA and BA sites displays the best hydrolytic activity towards acetamide and urea. This sample with high thermal stability was found to outperform urease at temperatures higher than 50 °C. The acidity-activity correlation established in this study is believed to guide the future design of industrial catalysts to remediate urea pollution.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article