Your browser doesn't support javascript.
loading
Date Palm Tree Leaf-Derived Cellulose Nanocrystal Incorporated Thin-Film Composite forward Osmosis Membranes for Produced Water Treatment.
Saud, Asif; Saleem, Haleema; Khan, Aquib Wakeel; Munira, Nazmin; Khan, Maryam; Zaidi, Syed Javaid.
Afiliação
  • Saud A; Center for Advanced Material, Qatar University, Doha 2713, Qatar.
  • Saleem H; Center for Advanced Material, Qatar University, Doha 2713, Qatar.
  • Khan AW; Center for Advanced Material, Qatar University, Doha 2713, Qatar.
  • Munira N; Center for Advanced Material, Qatar University, Doha 2713, Qatar.
  • Khan M; Center for Advanced Material, Qatar University, Doha 2713, Qatar.
  • Zaidi SJ; Center for Advanced Material, Qatar University, Doha 2713, Qatar.
Membranes (Basel) ; 13(5)2023 May 13.
Article em En | MEDLINE | ID: mdl-37233574
ABSTRACT
Worldwide water shortage and significant issues related to treatment of wastewater streams, mainly the water obtained during the recovery of oil and gas operations called produced water (PW), has enabled forward osmosis (FO) to progress and become advanced enough to effectively treat as well as retrieve water in order to be productively reused. Because of their exceptional permeability qualities, thin-film composite (TFC) membranes have gained increasing interest for use in FO separation processes. This research focused on developing a high water flux and less oil flux TFC membrane by incorporating sustainably developed cellulose nanocrystal (CNC) onto the polyamide (PA) layer of the TFC membrane. CNCs are prepared from date palm leaves and different characterization studies verified the definite formations of CNCs and the effective integration of CNCs in the PA layer. From the FO experiments, it was confirmed that that the membrane with 0.05 wt% of CNCs in the TFC membrane (TFN-5) showed better FO performance in PW treatment. Pristine TFC and TFN-5 membrane exhibited 96.2% and 99.0% of salt rejection and 90.5% and 97.45% of oil rejection. Further, TFC and TFN-5 demonstrated 0.46 and 1.61 LMHB pure water permeability and 0.41 and 1.42 LHM salt permeability, respectively. Thus, the developed membrane can help in overcoming the current challenges associated with TFC FO membranes for PW treatment processes.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article