Your browser doesn't support javascript.
loading
Discrimination of raffinose and planteose based on porous graphitic carbon chromatography in combination with mass spectrometry.
Lijina, P; Gnanesh Kumar, B S.
Afiliação
  • Lijina P; Department of Biochemistry, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
  • Gnanesh Kumar BS; Department of Biochemistry, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address: gnanesh@cftri.res.in.
Article em En | MEDLINE | ID: mdl-37245448
Raffinose and planteose are non-reducing, isomeric trisaccharides present in many higher plants. Structurally, they differ in the linkage of α-D-galactopyranosyl to either glucose C(6) or to C (6') of fructose, respectively and thus differentiating each other is very challenging. The negative ion mode mass spectrometric analysis is shown to distinguish planteose and raffinose. However, to facilitate the robust identification of planteose in complex mixtures, herein, we have demonstrated the use of porous graphitic carbon (PGC) chromatography combined with QTOF-MS2 analysis. The separation of planteose and raffinose was achieved on PGC, wherein both have recorded different retention time. Detection through MS2 analysis revealed the specific fragmentation patterns for planteose and raffinose that are distinctive to each other. The applicability of this method on oligosaccharides pool extracted from different seeds showed clear separation of planteose that allowed unambiguous identification from complex mixtures. Therefore, we propose PGC-LC-MS/MS can be employed for sensitive, throughput screening of planteose from wider plant sources.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Carbono / Grafite Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Carbono / Grafite Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article