Your browser doesn't support javascript.
loading
Femtosecond Laser-Printed Gold Nanoantennas for Electrically Driven and Bias-Tuned Nanoscale Light Sources Operating in Visible and Infrared Spectral Ranges.
Lebedev, Denis V; Solomonov, Nikita A; Dvoretckaia, Liliia N; Shkoldin, Vitaliy A; Permyakov, Dmitry V; Arkhipov, Alexander V; Mozharov, Alexey M; Pavlov, Dmitry V; Kuchmizhak, Aleksandr A; Mukhin, Ivan S.
Afiliação
  • Lebedev DV; Saint Petersburg Academic University, St. Petersburg, 194021 Russia.
  • Solomonov NA; Saint Petersburg State University, St. Petersburg, 199034, Russia.
  • Dvoretckaia LN; Institute for Analytical Instrumentation RAS, St. Petersburg, 190103, Russia.
  • Shkoldin VA; Saint Petersburg Academic University, St. Petersburg, 194021 Russia.
  • Permyakov DV; Saint Petersburg Academic University, St. Petersburg, 194021 Russia.
  • Arkhipov AV; Saint Petersburg Academic University, St. Petersburg, 194021 Russia.
  • Mozharov AM; ITMO University, St. Petersburg, 197101, Russia.
  • Pavlov DV; ITMO University, St. Petersburg, 197101, Russia.
  • Kuchmizhak AA; Peter the Great Saint Petersburg Polytechnic University, St. Petersburg, 195251, Russia.
  • Mukhin IS; Saint Petersburg Academic University, St. Petersburg, 194021 Russia.
J Phys Chem Lett ; 14(22): 5134-5140, 2023 Jun 08.
Article em En | MEDLINE | ID: mdl-37252711
ABSTRACT
Nanoscale electrically driven light-emitting sources with tunable wavelength represent a milestone for implementation of integrated optoelectronic chips. Plasmonic nanoantennas exhibiting an enhanced local density of optical states (LDOS) and strong Purcell effect hold promise for fabrication of bright nanoscale light emitters. Here, we justify gold parabola-shaped nanobumps and their ordered arrays produced by direct ablation-free femtosecond laser printing as broadband plasmonic light sources electrically excited by a probe of scanning tunneling microscope (STM). I-V curves of the probe-nanoantenna tunnel junction reveal characteristic bias voltages correlating with visible-range localized (0.55 and 0.85 µm) and near-IR (1.65 and 1.87 µm) collective plasmonic modes of these nanoantennas. These multiband resonances confirmed by optical spectroscopy and full-wave simulations provide enhanced LDOS for efficient electrically driven and bias-tuned light emission. Additionally, our studies confirm remarkable applicability of STM for accurate study of optical modes supported by the plasmonic nanoantennas at nanoscale spatial resolution.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article