Your browser doesn't support javascript.
loading
Copy Number Variation on ABCC2-DNMBP Loci Affects the Diversity and Composition of the Fecal Microbiota in Pigs.
Ramayo-Caldas, Yuliaxis; Crespo-Piazuelo, Daniel; Morata, Jordi; González-Rodríguez, Olga; Sebastià, Cristina; Castello, Anna; Dalmau, Antoni; Ramos-Onsins, Sebastian; Alexiou, Konstantinos G; Folch, Josep M; Quintanilla, Raquel; Ballester, Maria.
Afiliação
  • Ramayo-Caldas Y; Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology, Caldes de Montbui, Spain.
  • Crespo-Piazuelo D; Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology, Caldes de Montbui, Spain.
  • Morata J; Centro Nacional de Análisis Genómico, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
  • González-Rodríguez O; Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology, Caldes de Montbui, Spain.
  • Sebastià C; Plant and Animal Genomics Program, Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas (CSIC)-Institute of Agrifood Research and Technology-Autonomous University of Barcelona-UB, Bellaterra, Spain.
  • Castello A; Animal and Food Science Department, Autonomous University of Barcelona, Bellaterra, Spain.
  • Dalmau A; Plant and Animal Genomics Program, Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas (CSIC)-Institute of Agrifood Research and Technology-Autonomous University of Barcelona-UB, Bellaterra, Spain.
  • Ramos-Onsins S; Animal and Food Science Department, Autonomous University of Barcelona, Bellaterra, Spain.
  • Alexiou KG; Animal Welfare Program, Institute of Agrifood Research and Technology, Girona, Spain.
  • Folch JM; Plant and Animal Genomics Program, Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas (CSIC)-Institute of Agrifood Research and Technology-Autonomous University of Barcelona-UB, Bellaterra, Spain.
  • Quintanilla R; Plant and Animal Genomics Program, Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas (CSIC)-Institute of Agrifood Research and Technology-Autonomous University of Barcelona-UB, Bellaterra, Spain.
  • Ballester M; Plant and Animal Genomics Program, Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas (CSIC)-Institute of Agrifood Research and Technology-Autonomous University of Barcelona-UB, Bellaterra, Spain.
Microbiol Spectr ; 11(4): e0527122, 2023 08 17.
Article em En | MEDLINE | ID: mdl-37255458
ABSTRACT
Genetic variation in the pig genome partially modulates the composition of porcine gut microbial communities. Previous studies have been focused on the association between single nucleotide polymorphisms (SNPs) and the gut microbiota, but little is known about the relationship between structural variants and fecal microbial traits. The main goal of this study was to explore the association between porcine genome copy number variants (CNVs) and the diversity and composition of pig fecal microbiota. For this purpose, we used whole-genome sequencing data to undertake a comprehensive identification of CNVs followed by a genome-wide association analysis between the estimated CNV status and the fecal bacterial diversity in a commercial Duroc pig population. A CNV predicted as gain (DUP) partially harboring ABCC2-DNMBP loci was associated with richness (P = 5.41 × 10-5, false discovery rate [FDR] = 0.022) and Shannon α-diversity (P = 1.42 × 10-4, FDR = 0.057). The in silico predicted gain of copies was validated by real-time quantitative PCR (qPCR), and its segregation, and positive association with the richness and Shannon α-diversity of the porcine fecal bacterial ecosystem was confirmed in an unrelated F1 (Duroc × Iberian) cross. Our results advise the relevance of considering the role of host-genome structural variants as potential modulators of microbial ecosystems and suggest the ABCC2-DNMBP CNV as a host-genetic factor for the modulation of the diversity and composition of the fecal microbiota in pigs. IMPORTANCE A better understanding of the environmental and host factors modulating gut microbiomes is a topic of greatest interest. Recent evidence suggests that genetic variation in the pig genome partially controls the composition of porcine gut microbiota. However, since previous studies have been focused on the association between single nucleotide polymorphisms and the fecal microbiota, little is known about the relationship between other sources of genetic variation, like the structural variants and microbial traits. Here, we identified, experimentally validated, and replicated in an independent population a positive link between the gain of copies of ABCC2-DNMBP loci and the diversity and composition of pig fecal microbiota. Our results advise the relevance of considering the role of host-genome structural variants as putative modulators of microbial ecosystems and open the possibility of implementing novel holobiont-based management strategies in breeding programs for the simultaneous improvement of microbial traits and host performance.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Estudo de Associação Genômica Ampla / Microbiota Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Estudo de Associação Genômica Ampla / Microbiota Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article