Your browser doesn't support javascript.
loading
deCLUTTER2+ - a pipeline to analyze calcium traces in a stem cell model for ventral midbrain patterned astrocytes.
Grochowska, Martyna M; Ferraro, Federico; Carreras Mascaro, Ana; Natale, Domenico; Winkelaar, Amber; Boumeester, Valerie; Breedveld, Guido J; Bonifati, Vincenzo; Mandemakers, Wim.
Afiliação
  • Grochowska MM; Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA Rotterdam, Netherlands.
  • Ferraro F; Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA Rotterdam, Netherlands.
  • Carreras Mascaro A; Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA Rotterdam, Netherlands.
  • Natale D; Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA Rotterdam, Netherlands.
  • Winkelaar A; Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA Rotterdam, Netherlands.
  • Boumeester V; Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA Rotterdam, Netherlands.
  • Breedveld GJ; Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA Rotterdam, Netherlands.
  • Bonifati V; Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA Rotterdam, Netherlands.
  • Mandemakers W; Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA Rotterdam, Netherlands.
Dis Model Mech ; 16(6)2023 06 01.
Article em En | MEDLINE | ID: mdl-37260295
ABSTRACT
Astrocytes are the most populous cell type of the human central nervous system and are essential for physiological brain function. Increasing evidence suggests multiple roles for astrocytes in Parkinson's disease, nudging a shift in the research focus, which historically pivoted around ventral midbrain dopaminergic neurons (vmDANs). Studying human astrocytes and other cell types in vivo remains challenging. However, in vitro-reprogrammed human stem cell-based models provide a promising alternative. Here, we describe a novel protocol for astrocyte differentiation from human stem cell-derived vmDAN-generating progenitors. This protocol simulates the regionalization, gliogenic switch, radial migration and final differentiation that occur in the developing human brain. We characterized the morphological, molecular and functional features of these ventral midbrain patterned astrocytes with a broad palette of techniques and identified novel candidate midbrain-astrocyte specific markers. In addition, we developed a new pipeline for calcium imaging data analysis called deCLUTTER2+ (deconvolution of Ca2+ fluorescent patterns) that can be used to discover spontaneous or cue-dependent patterns of Ca2+ transients. Altogether, our protocol enables the characterization of the functional properties of human ventral midbrain patterned astrocytes under physiological conditions and in disease.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Células-Tronco Pluripotentes Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Células-Tronco Pluripotentes Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article