Your browser doesn't support javascript.
loading
Genetic Susceptibility to Atrial Fibrillation Identified via Deep Learning of 12-Lead Electrocardiograms.
Wang, Xin; Khurshid, Shaan; Choi, Seung Hoan; Friedman, Samuel; Weng, Lu-Chen; Reeder, Christopher; Pirruccello, James P; Singh, Pulkit; Lau, Emily S; Venn, Rachael; Diamant, Nate; Di Achille, Paolo; Philippakis, Anthony; Anderson, Christopher D; Ho, Jennifer E; Ellinor, Patrick T; Batra, Puneet; Lubitz, Steven A.
Afiliação
  • Wang X; Cardiovascular Research Center, Department of Medicine (X.W., S.K., L.-C.W., J.P.P., E.S.L., R.V., P.T.E., S.A.L.), Massachusetts General Hospital, Boston.
  • Khurshid S; Cardiovascular Disease Initiative (X.W., S.K., S.H.C., L.-C.W., J.P.P., E.S.L., P.T.E., S.A.L.), The Broad Institute of MIT and Harvard, Cambridge, MA.
  • Choi SH; Cardiovascular Research Center, Department of Medicine (X.W., S.K., L.-C.W., J.P.P., E.S.L., R.V., P.T.E., S.A.L.), Massachusetts General Hospital, Boston.
  • Friedman S; Division of Cardiology, Department of Medicine (S.K., J.P.P., E.S.L., R.V.), Massachusetts General Hospital, Boston.
  • Weng LC; Cardiovascular Disease Initiative (X.W., S.K., S.H.C., L.-C.W., J.P.P., E.S.L., P.T.E., S.A.L.), The Broad Institute of MIT and Harvard, Cambridge, MA.
  • Reeder C; Cardiovascular Disease Initiative (X.W., S.K., S.H.C., L.-C.W., J.P.P., E.S.L., P.T.E., S.A.L.), The Broad Institute of MIT and Harvard, Cambridge, MA.
  • Pirruccello JP; Data Sciences Platform (S.F., C.R., P.S., N.D., P.D.A., A.P., P.B.), The Broad Institute of MIT and Harvard, Cambridge, MA.
  • Singh P; Cardiovascular Research Center, Department of Medicine (X.W., S.K., L.-C.W., J.P.P., E.S.L., R.V., P.T.E., S.A.L.), Massachusetts General Hospital, Boston.
  • Lau ES; Cardiovascular Disease Initiative (X.W., S.K., S.H.C., L.-C.W., J.P.P., E.S.L., P.T.E., S.A.L.), The Broad Institute of MIT and Harvard, Cambridge, MA.
  • Venn R; Data Sciences Platform (S.F., C.R., P.S., N.D., P.D.A., A.P., P.B.), The Broad Institute of MIT and Harvard, Cambridge, MA.
  • Diamant N; Cardiovascular Research Center, Department of Medicine (X.W., S.K., L.-C.W., J.P.P., E.S.L., R.V., P.T.E., S.A.L.), Massachusetts General Hospital, Boston.
  • Di Achille P; Division of Cardiology, Department of Medicine (S.K., J.P.P., E.S.L., R.V.), Massachusetts General Hospital, Boston.
  • Philippakis A; Cardiovascular Disease Initiative (X.W., S.K., S.H.C., L.-C.W., J.P.P., E.S.L., P.T.E., S.A.L.), The Broad Institute of MIT and Harvard, Cambridge, MA.
  • Anderson CD; Data Sciences Platform (S.F., C.R., P.S., N.D., P.D.A., A.P., P.B.), The Broad Institute of MIT and Harvard, Cambridge, MA.
  • Ho JE; Cardiovascular Research Center, Department of Medicine (X.W., S.K., L.-C.W., J.P.P., E.S.L., R.V., P.T.E., S.A.L.), Massachusetts General Hospital, Boston.
  • Ellinor PT; Demoulas Center for Cardiac Arrhythmias, Department of Medicine (P.T.E., S.A.L.), Massachusetts General Hospital, Boston.
  • Batra P; Cardiovascular Disease Initiative (X.W., S.K., S.H.C., L.-C.W., J.P.P., E.S.L., P.T.E., S.A.L.), The Broad Institute of MIT and Harvard, Cambridge, MA.
  • Lubitz SA; Cardiovascular Research Center, Department of Medicine (X.W., S.K., L.-C.W., J.P.P., E.S.L., R.V., P.T.E., S.A.L.), Massachusetts General Hospital, Boston.
Circ Genom Precis Med ; 16(4): 340-349, 2023 08.
Article em En | MEDLINE | ID: mdl-37278238
BACKGROUND: Artificial intelligence (AI) models applied to 12-lead ECG waveforms can predict atrial fibrillation (AF), a heritable and morbid arrhythmia. However, the factors forming the basis of risk predictions from AI models are usually not well understood. We hypothesized that there might be a genetic basis for an AI algorithm for predicting the 5-year risk of new-onset AF using 12-lead ECGs (ECG-AI)-based risk estimates. METHODS: We applied a validated ECG-AI model for predicting incident AF to ECGs from 39 986 UK Biobank participants without AF. We then performed a genome-wide association study (GWAS) of the predicted AF risk and compared it with an AF GWAS and a GWAS of risk estimates from a clinical variable model. RESULTS: In the ECG-AI GWAS, we identified 3 signals (P<5×10-8) at established AF susceptibility loci marked by the sarcomeric gene TTN and sodium channel genes SCN5A and SCN10A. We also identified 2 novel loci near the genes VGLL2 and EXT1. In contrast, the clinical variable model prediction GWAS indicated a different genetic profile. In genetic correlation analysis, the prediction from the ECG-AI model was estimated to have a higher correlation with AF than that from the clinical variable model. CONCLUSIONS: Predicted AF risk from an ECG-AI model is influenced by genetic variation implicating sarcomeric, ion channel and body height pathways. ECG-AI models may identify individuals at risk for disease via specific biological pathways.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fibrilação Atrial / Aprendizado Profundo Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fibrilação Atrial / Aprendizado Profundo Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article