Your browser doesn't support javascript.
loading
Single-cell Ca2+ parameter inference reveals how transcriptional states inform dynamic cell responses.
Wu, Xiaojun; Wollman, Roy; MacLean, Adam L.
Afiliação
  • Wu X; Department of Quantitative and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA.
  • Wollman R; Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA.
  • MacLean AL; Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
J R Soc Interface ; 20(203): 20230172, 2023 06.
Article em En | MEDLINE | ID: mdl-37282589
ABSTRACT
Single-cell genomic technologies offer vast new resources with which to study cells, but their potential to inform parameter inference of cell dynamics has yet to be fully realized. Here we develop methods for Bayesian parameter inference with data that jointly measure gene expression and Ca2+ dynamics in single cells. We propose to share information between cells via transfer learning for a sequence of cells, the posterior distribution of one cell is used to inform the prior distribution of the next. In application to intracellular Ca2+ signalling dynamics, we fit the parameters of a dynamical model for thousands of cells with variable single-cell responses. We show that transfer learning accelerates inference with sequences of cells regardless of how the cells are ordered. However, only by ordering cells based on their transcriptional similarity can we distinguish Ca2+ dynamic profiles and associated marker genes from the posterior distributions. Inference results reveal complex and competing sources of cell heterogeneity parameter covariation can diverge between the intracellular and intercellular contexts. Overall, we discuss the extent to which single-cell parameter inference informed by transcriptional similarity can quantify relationships between gene expression states and signalling dynamics in single cells.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Genômica Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Genômica Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article