Your browser doesn't support javascript.
loading
Validation of quantitative assessment of florbetaben PET scans as an adjunct to the visual assessment across 15 software methods.
Jovalekic, Aleksandar; Roé-Vellvé, Núria; Koglin, Norman; Quintana, Mariana Lagos; Nelson, Aaron; Diemling, Markus; Lilja, Johan; Gómez-González, Juan Pablo; Doré, Vincent; Bourgeat, Pierrick; Whittington, Alex; Gunn, Roger; Stephens, Andrew W; Bullich, Santiago.
Afiliação
  • Jovalekic A; Life Molecular Imaging GmbH, Berlin, Germany. a.jovalekic@life-mi.com.
  • Roé-Vellvé N; Life Molecular Imaging GmbH, Berlin, Germany.
  • Koglin N; Life Molecular Imaging GmbH, Berlin, Germany.
  • Quintana ML; Life Molecular Imaging GmbH, Berlin, Germany.
  • Nelson A; MIM Software Inc., Cleveland, OH, USA.
  • Diemling M; Hermes Medical Solutions, Stockholm, Sweden.
  • Lilja J; Hermes Medical Solutions, Stockholm, Sweden.
  • Gómez-González JP; Qubiotech Health Intelligence, A Coruña, Spain.
  • Doré V; Department of Molecular Imaging & Therapy, Austin Health, Melbourne, Australia.
  • Bourgeat P; CSIRO, Brisbane, Australia.
  • Whittington A; Invicro, London, UK.
  • Gunn R; Invicro, London, UK.
  • Stephens AW; Life Molecular Imaging GmbH, Berlin, Germany.
  • Bullich S; Life Molecular Imaging GmbH, Berlin, Germany.
Eur J Nucl Med Mol Imaging ; 50(11): 3276-3289, 2023 09.
Article em En | MEDLINE | ID: mdl-37300571
PURPOSE: Amyloid positron emission tomography (PET) with [18F]florbetaben (FBB) is an established tool for detecting Aß deposition in the brain in vivo based on visual assessment of PET scans. Quantitative measures are commonly used in the research context and allow continuous measurement of amyloid burden. The aim of this study was to demonstrate the robustness of FBB PET quantification. METHODS: This is a retrospective analysis of FBB PET images from 589 subjects. PET scans were quantified with 15 analytical methods using nine software packages (MIMneuro, Hermes BRASS, Neurocloud, Neurology Toolkit, statistical parametric mapping (SPM8), PMOD Neuro, CapAIBL, non-negative matrix factorization (NMF), AmyloidIQ) that used several metrics to estimate Aß load (SUVR, centiloid, amyloid load, and amyloid index). Six analytical methods reported centiloid (MIMneuro, standard centiloid, Neurology Toolkit, SPM8 (PET only), CapAIBL, NMF). All results were quality controlled. RESULTS: The mean sensitivity, specificity, and accuracy were 96.1 ± 1.6%, 96.9 ± 1.0%, and 96.4 ± 1.1%, respectively, for all quantitative methods tested when compared to histopathology, where available. The mean percentage of agreement between binary quantitative assessment across all 15 methods and visual majority assessment was 92.4 ± 1.5%. Assessments of reliability, correlation analyses, and comparisons across software packages showed excellent performance and consistent results between analytical methods. CONCLUSION: This study demonstrated that quantitative methods using both CE marked software and other widely available processing tools provided comparable results to visual assessments of FBB PET scans. Software quantification methods, such as centiloid analysis, can complement visual assessment of FBB PET images and could be used in the future for identification of early amyloid deposition, monitoring disease progression and treatment effectiveness.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Peptídeos beta-Amiloides / Doença de Alzheimer Tipo de estudo: Observational_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Peptídeos beta-Amiloides / Doença de Alzheimer Tipo de estudo: Observational_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article