Your browser doesn't support javascript.
loading
Metabolic consequences of sex reversal in two lizard species: a test of the like-genotype and like-phenotype hypotheses.
Wild, Kristoffer H; Roe, John H; Schwanz, Lisa; Rodgers, Essie; Dissanayake, Duminda S B; Georges, Arthur; Sarre, Stephen D; Noble, Daniel W A.
Afiliação
  • Wild KH; Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, AUS.
  • Roe JH; Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, AUS.
  • Schwanz L; Department of Biology, University of North Carolina Pembroke, Pembroke, NC 28372-1510, USA.
  • Rodgers E; Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
  • Dissanayake DSB; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia.
  • Georges A; Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, AUS.
  • Sarre SD; Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, AUS.
  • Noble DWA; Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, AUS.
J Exp Biol ; 226(13)2023 07 01.
Article em En | MEDLINE | ID: mdl-37309620
Vertebrate sex is typically determined genetically, but in many ectotherms sex can be determined by genes (genetic sex determination, GSD), temperature (temperature-dependent sex determination, TSD), or interactions between genes and temperature during development. TSD may involve GSD systems with either male or female heterogamety (XX/XY or ZZ/ZW) where temperature overrides chromosomal sex determination to cause a mismatch between genetic sex and phenotypic sex (sex reversal). In these temperature-sensitive lineages, phylogenetic investigations point to recurrent evolutionary shifts between genotypic and temperature-dependent sex determination. These evolutionary transitions in sex determination can occur rapidly if selection favours the reversed sex over the concordant phenotypic sex. To investigate the consequences of sex reversal on offspring phenotypes, we measured two energy-driven traits (metabolism and growth) and 6 month survival in two species of reptile with different patterns of temperature-induced sex reversal. Male sex reversal occurs in Bassiana duperreyi when chromosomal females (female XX) develop male phenotypes (maleSR XX), while female sex reversal occurs in Pogona vitticeps when chromosomal males (male ZZ) develop female phenotypes (femaleSR ZZ). We show metabolism in maleSR XX was like that of male XY; that is, reflective of phenotypic sex and lower than genotypic sex. In contrast, for Pogona vitticeps, femaleSR ZZ metabolism was intermediate between male ZZ and female ZW metabolic rate. For both species, our data indicate that differences in metabolism become more apparent as individuals become larger. Our findings provide some evidence for an energetic advantage from sex reversal in both species but do not exclude energetic processes as a constraint on the distribution of sex reversal in nature.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Lagartos Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Lagartos Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article