Your browser doesn't support javascript.
loading
Expansion of the Materials Cloud 2D Database.
Campi, Davide; Mounet, Nicolas; Gibertini, Marco; Pizzi, Giovanni; Marzari, Nicola.
Afiliação
  • Campi D; Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
  • Mounet N; Dipartimento di Scienza dei Materiali, University of Milano-Bicocca, Via R.Cozzi 55, 20125 Milano, Italy.
  • Gibertini M; Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
  • Pizzi G; Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
  • Marzari N; Dipartimento di Scienze Fisiche, Informatiche e Matematiche, University of Modena and Reggio Emilia, I-41125 Modena, Italy.
ACS Nano ; 17(12): 11268-11278, 2023 Jun 27.
Article em En | MEDLINE | ID: mdl-37310789
ABSTRACT
Two-dimensional (2D) materials are among the most promising candidates for beyond-silicon electronic, optoelectronic, and quantum computing applications. Recently, their recognized importance sparked a push to discover and characterize novel 2D materials. Within a few years, the number of experimentally exfoliated or synthesized 2D materials went from a few to more than a hundred, with the number of theoretically predicted compounds reaching a few thousand. In 2018 we first contributed to this effort with the identification of 1825 compounds that are either easily (1036) or potentially (789) exfoliable from experimentally known 3D compounds. Here, we report on a major expansion of this 2D portfolio thanks to the extension of the screening protocol to an additional experimental database (MPDS) as well as the updated versions of the two databases (ICSD and COD) used in our previous work. This expansion leads to the discovery of an additional 1252 monolayers, bringing the total to 3077 compounds and, notably, almost doubling the number of easily exfoliable materials to 2004. We optimize the structural properties of all these monolayers and explore their electronic structure with a particular emphasis on those rare large-bandgap 2D materials that could be precious in isolating 2D field-effect-transistor channels. Finally, for each material containing up to 6 atoms per unit cell, we identify the best candidates to form commensurate heterostructures, balancing requirements on supercell size and minimal strain.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article