Your browser doesn't support javascript.
loading
Base- or acid-assisted polystyrene plastic degradation in supercritical CO2.
Liu, Yanbing; Shi, Jinwen; Mao, Liuhao; Lu, Bingru; Kang, Xing; Jin, Hui.
Afiliação
  • Liu Y; International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an, 710049 Shaanxi China.
  • Shi J; International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an, 710049 Shaanxi China.
  • Mao L; International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an, 710049 Shaanxi China.
  • Lu B; International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an, 710049 Shaanxi China.
  • Kang X; International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an, 710049 Shaanxi China.
  • Jin H; International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an, 710049 Shaanxi China.
Waste Dispos Sustain Energy ; : 1-11, 2023 Mar 18.
Article em En | MEDLINE | ID: mdl-37359813
ABSTRACT
Plastic has caused serious "white pollution" to the environment, and the highly inert characteristics of plastic bring a major challenge for degradation. Supercritical fluids have unique physical properties and have been widely used in various fields. In this work, supercritical CO2 (Sc-CO2) with mild conditions was selected and assisted by NaOH/HCl solution to degrade polystyrene (PS) plastic, and the reaction model was designed using response surface methodology (RSM). It was found that, regardless of the types of assistance solutions, the factors affecting PS degradation efficiencies were reaction temperature, reaction time, and NaOH/HCl concentration. At the temperature of 400 °C, time of 120 min, and base/acid concentration of 5% (in weight), 0.15 g PS produced 126.88/116.99±5 mL of gases with 74.18/62.78±5 mL of H2, and consumed 81.2/71.5±5 mL of CO2. Sc-CO2 created a homogeneous environment, which made PS highly dispersed and uniformly heated, thus promoting the degradation of PS. Moreover, Sc-CO2 also reacted with the degradation products to produce new CO and more CH4 and C2Hx (x=4, 6). Adding NaOH/HCl solution not only improved the solubility of PS in Sc-CO2, but also provided a base/acid environment that reduced the activation energy of the reaction, and effectively improved the degradation efficiencies of PS. In short, degrading PS in Sc-CO2 is feasible, and better results are obtained with the assistance of base/acid solution, which can provide a reference for the disposal of waste plastics in the future. Supplementary Information The online version contains supplementary material available at 10.1007/s42768-023-00139-1.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article