Your browser doesn't support javascript.
loading
Ab Initio Spin Hamiltonian and Topological Noncentrosymmetric Magnetism in Twisted Bilayer CrI3.
Kim, Kyoung-Min; Kiem, Do Hoon; Bednik, Grigory; Han, Myung Joon; Park, Moon Jip.
Afiliação
  • Kim KM; Center for Theoretical Physics of Complex Systems, Institute for Basic Science, Daejeon 34126, Republic of Korea.
  • Kiem DH; Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
  • Bednik G; Center for Theoretical Physics of Complex Systems, Institute for Basic Science, Daejeon 34126, Republic of Korea.
  • Han MJ; Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
  • Park MJ; Center for Theoretical Physics of Complex Systems, Institute for Basic Science, Daejeon 34126, Republic of Korea.
Nano Lett ; 23(13): 6088-6094, 2023 Jul 12.
Article em En | MEDLINE | ID: mdl-37367179
Twist engineering of van der Waals magnets has emerged as an outstanding platform for manipulating exotic magnetic states. However, the complicated form of spin interactions in the large moiré superlattice obstructs a concrete understanding of such spin systems. To tackle this problem, for the first time, we developed a generic ab initio spin Hamiltonian for twisted bilayer magnets. Our atomistic model reveals that strong AB sublattice symmetry breaking due to the twist introduces a promising route to realize the novel noncentrosymmetric magnetism. Several unprecedented features and phases are uncovered including the peculiar domain structure and skyrmion phase induced by noncentrosymmetricity. The diagram of those distinctive magnetic phases has been constructed, and the detailed nature of their transitions analyzed. Further, we established the topological band theory of moiré magnons relevant to each of these phases. By respecting the full lattice structure, our theory provides the characteristic features that can be detected in experiments.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article