Your browser doesn't support javascript.
loading
Dual-Site Metal Catalysts for Electrocatalytic CO2 Reduction Reaction.
Liu, Li; Wu, Xueting; Wang, Fei; Zhang, Lingling; Wang, Xiao; Song, Shuyan; Zhang, Hongjie.
Afiliação
  • Liu L; State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China.
  • Wu X; University of Science and Technology of China, 96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China.
  • Wang F; State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China.
  • Zhang L; University of Science and Technology of China, 96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China.
  • Wang X; State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China.
  • Song S; State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China.
  • Zhang H; State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China.
Chemistry ; 29(49): e202300583, 2023 Sep 01.
Article em En | MEDLINE | ID: mdl-37367498
ABSTRACT
Electrocatalytic CO2 reduction reaction (CO2 RR) is a promising and green approach for reducing atmospheric CO2 concentration and achieving high-valued conversion of CO2 under the carbon-neutral policy. In CO2 RR, the dual-site metal catalysts (DSMCs) have received wide attention for their ingenious design strategies, abundant active sites, and excellent catalytic performance attributed to the synergistic effect between dual-site in terms of activity, selectivity and stability, which plays a key role in catalytic reactions. This review provides a systematic summary and detailed classification of DSMCs for CO2 RR, describes the mechanism of synergistic effects in catalytic reactions, and also introduces in situ characterization techniques commonly used in CO2 RR. Finally, the main challenges and prospects of dual-site metal catalysts and even multi-site catalysts for CO2 recycling are analyzed. It is believed that based on the understanding of bimetallic site catalysts and synergistic effects in CO2 RR, well-designed high-performance, low-cost electrocatalysts are promising for achieving CO2 conversion, electrochemical energy conversion and storage in the future.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article