Your browser doesn't support javascript.
loading
Predictive Models for Compound Binding to Androgen and Estrogen Receptors Based on Counter-Propagation Artificial Neural Networks.
Stanojevic, Mark; Sollner Dolenc, Marija; Vracko, Marjan.
Afiliação
  • Stanojevic M; BiSafe d.o.o., 1000 Ljubljana, Slovenia.
  • Sollner Dolenc M; Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
  • Vracko M; Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
Toxics ; 11(6)2023 May 26.
Article em En | MEDLINE | ID: mdl-37368586
ABSTRACT
Endocrine-disrupting chemicals (EDCs) are exogenous substances that interfere with the normal function of the human endocrine system. These chemicals can affect specific nuclear receptors, such as androgen receptors (ARs) or estrogen receptors (ER) α and ß, which play a crucial role in regulating complex physiological processes in humans. It is now more crucial than ever to identify EDCs and reduce exposure to them. For screening and prioritizing chemicals for further experimentation, the use of artificial neural networks (ANN), which allow the modeling of complicated, nonlinear relationships, is most appropriate. We developed six models that predict the binding of a compound to ARs, ERα, or ERß as agonists or antagonists, using counter-propagation artificial neural networks (CPANN). Models were trained on a dataset of structurally diverse compounds, and activity data were obtained from the CompTox Chemicals Dashboard. Leave-one-out (LOO) tests were performed to validate the models. The results showed that the models had excellent performance with prediction accuracy ranging from 94% to 100%. Therefore, the models can predict the binding affinity of an unknown compound to the selected nuclear receptor based solely on its chemical structure. As such, they represent important alternatives for the safety prioritization of chemicals.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article