Your browser doesn't support javascript.
loading
Rugged Forest Morphology of Magnetoplasmonic Nanorods that Collect Maximum Light for Photoelectrochemical Water Splitting.
Goddati, Mahendra; Nguyen, Huu-Quang; Kang, Sohyun; Gicha, Birhanu Bayissa; Tufa, Lemma Teshome; Nwaji, Njemuwa; Nguyen, My-Chi Thi; Gwak, Juyong; Lee, Jaebeom.
Afiliação
  • Goddati M; Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea.
  • Nguyen HQ; Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea.
  • Kang S; Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea.
  • Gicha BB; Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea.
  • Tufa LT; Environmental Science Program, Haramaya University, Dire Dawa, P.O. Box 138, Ethiopia.
  • Nwaji N; Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea.
  • Nguyen MT; Institute of Materials Chemistry, Chungnam National University, Daejeon, 34134, South Korea.
  • Gwak J; Department of Chemistry, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia.
  • Lee J; Institute of Materials Chemistry, Chungnam National University, Daejeon, 34134, South Korea.
Small ; 19(43): e2302980, 2023 Oct.
Article em En | MEDLINE | ID: mdl-37376838
ABSTRACT
A feasible nanoscale framework of heterogeneous plasmonic materials and proper surface engineering can enhance photoelectrochemical (PEC) water-splitting performance owing to increased light absorbance, efficient bulk carrier transport, and interfacial charge transfer. This article introduces a new magnetoplasmonic (MagPlas) Ni-doped Au@Fex Oy nanorods (NRs) based material as a novel photoanode for PEC water-splitting. A two stage procedure produces core-shell Ni/Au@Fex Oy MagPlas NRs. The first-step is a one-pot solvothermal synthesis of Au@Fex Oy . The hollow Fex Oy nanotubes (NTs) are a hybrid of Fe2 O3 and Fe3 O4 , and the second-step is a sequential hydrothermal treatment for Ni doping. Then, a transverse magnetic field-induced assembly is adopted to decorate Ni/Au@Fex Oy on FTO glass to be an artificially roughened morphologic surface called a rugged forest, allowing more light absorption and active electrochemical sites. Then, to characterize its optical and surface properties, COMSOL Multiphysics simulations are carried out. The core-shell Ni/Au@Fex Oy MagPlas NRs increase photoanode interface charge transfer to 2.73 mAcm-2 at 1.23 V RHE. This improvement is made possible by the rugged morphology of the NRs, which provide more active sites and oxygen vacancies as the hole transfer medium. The recent finding may provide light on plasmonic photocatalytic hybrids and surface morphology for effective PEC photoanodes.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article