Your browser doesn't support javascript.
loading
Programmable Proteolysis-Activated Transcription for Highly Sensitive Ratiometric Electrochemical Detection of Viral Protease.
Xie, Shiyi; Zhu, Cong; Yang, Lijuan; Li, Huiyi; Zhu, Haizhen; Nie, Zhou; Lei, Chunyang.
Afiliação
  • Xie S; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China.
  • Zhu C; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China.
  • Yang L; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China.
  • Li H; Institute of Pathogen Biology and Immunology of College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China.
  • Zhu H; Institute of Pathogen Biology and Immunology of College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China.
  • Nie Z; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China.
  • Lei C; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China.
Anal Chem ; 95(28): 10728-10735, 2023 07 18.
Article em En | MEDLINE | ID: mdl-37410966
Viral proteases play a crucial role in viral infection and are regarded as promising targets for antiviral drug development. Consequently, biosensing methods that target viral proteases have contributed to the study of virus-related diseases. This work presents a ratiometric electrochemical sensor that enables highly sensitive detection of viral proteases through the integration of target proteolysis-activated in vitro transcription and the DNA-functionalized electrochemical interface. In particular, each viral protease-mediated proteolysis triggers the transcription of multiple RNA outputs, leading to amplified ratiometric signals on the electrochemical interface. Using the NS3/4A protease of the hepatitis C virus as a model, this method achieves robust and specific NS3/4A protease sensing with sub-femtomolar sensitivity. The feasibility of this sensor was demonstrated by monitoring NS3/4A protease activities in virus-infected cell samples with varying viral loads and post-infection times. This study provides a new approach to analyzing viral proteases and holds the potential for developing direct-acting antivirals and novel therapies for viral infections.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Técnicas Eletroquímicas Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Técnicas Eletroquímicas Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article