Your browser doesn't support javascript.
loading
Unveiling the dark side of guard cell metabolism.
Lima, Valéria F; Freire, Francisco Bruno S; Cândido-Sobrinho, Silvio A; Porto, Nicole P; Medeiros, David B; Erban, Alexander; Kopka, Joachim; Schwarzländer, Markus; Fernie, Alisdair R; Daloso, Danilo M.
Afiliação
  • Lima VF; LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil.
  • Freire FBS; LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil.
  • Cândido-Sobrinho SA; LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil.
  • Porto NP; LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil.
  • Medeiros DB; Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany.
  • Erban A; Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany.
  • Kopka J; Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany.
  • Schwarzländer M; Institute of Plant Biology and Biotechnology, Westfälische-Wilhelms-Universität Münster, D-48143, Münster, Germany.
  • Fernie AR; Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany.
  • Daloso DM; LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil. Electronic address: daloso@ufc.br.
Plant Physiol Biochem ; 201: 107862, 2023 Aug.
Article em En | MEDLINE | ID: mdl-37413941
ABSTRACT
Evidence suggests that guard cells have higher rate of phosphoenolpyruvate carboxylase (PEPc)-mediated dark CO2 assimilation than mesophyll cells. However, it is unknown which metabolic pathways are activated following dark CO2 assimilation in guard cells. Furthermore, it remains unclear how the metabolic fluxes throughout the tricarboxylic acid (TCA) cycle and associated pathways are regulated in illuminated guard cells. Here we carried out a13C-HCO3 labelling experiment in tobacco guard cells harvested under continuous dark or during the dark-to-light transition to elucidate principles of metabolic dynamics downstream of CO2 assimilation. Most metabolic changes were similar between dark-exposed and illuminated guard cells. However, illumination altered the metabolic network structure of guard cells and increased the 13C-enrichment in sugars and metabolites associated to the TCA cycle. Sucrose was labelled in the dark, but light exposure increased the 13C-labelling and leads to more drastic reductions in the content of this metabolite. Fumarate was strongly labelled under both dark and light conditions, while illumination increased the 13C-enrichment in pyruvate, succinate and glutamate. Only one 13C was incorporated into malate and citrate in either dark or light conditions. Our results indicate that several metabolic pathways are redirected following PEPc-mediated CO2 assimilation in the dark, including gluconeogenesis and the TCA cycle. We further showed that the PEPc-mediated CO2 assimilation provides carbons for gluconeogenesis, the TCA cycle and glutamate synthesis and that previously stored malate and citrate are used to underpin the specific metabolic requirements of illuminated guard cells.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dióxido de Carbono / Malatos Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dióxido de Carbono / Malatos Idioma: En Ano de publicação: 2023 Tipo de documento: Article