Your browser doesn't support javascript.
loading
Quantifying disorder one atom at a time using an interpretable graph neural network paradigm.
Chapman, James; Hsu, Tim; Chen, Xiao; Heo, Tae Wook; Wood, Brandon C.
Afiliação
  • Chapman J; Department of Mechanical Engineering, Boston University, Boston, MA, USA. jc112358@bu.edu.
  • Hsu T; Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, USA. jc112358@bu.edu.
  • Chen X; Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, USA. hsu16@llnl.gov.
  • Heo TW; Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Wood BC; Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
Nat Commun ; 14(1): 4030, 2023 Jul 07.
Article em En | MEDLINE | ID: mdl-37419927
ABSTRACT
Quantifying the level of atomic disorder within materials is critical to understanding how evolving local structural environments dictate performance and durability. Here, we leverage graph neural networks to define a physically interpretable metric for local disorder, called SODAS. This metric encodes the diversity of the local atomic configurations as a continuous spectrum between the solid and liquid phases, quantified against a distribution of thermal perturbations. We apply this methodology to four prototypical examples with varying levels of disorder (1) grain boundaries, (2) solid-liquid interfaces, (3) polycrystalline microstructures, and (4) tensile failure/fracture. We also compare SODAS to several commonly used methods. Using elemental aluminum as a case study, we show how our paradigm can track the spatio-temporal evolution of interfaces, incorporating a mathematically defined description of the spatial boundary between order and disorder. We further show how to extract physics-preserved gradients from our continuous disorder fields, which may be used to understand and predict materials performance and failure. Overall, our framework provides a simple and generalizable pathway to quantify the relationship between complex local atomic structure and coarse-grained materials phenomena.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Alumínio Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Alumínio Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article