Your browser doesn't support javascript.
loading
Transformation of aqueous protein attenuated total reflectance infra-red absorbance spectroscopy to transmission.
Rodger, Alison; Steel, Michael J; Goodchild, Sophia C; Chmel, Nikola P; Reason, Andrew.
Afiliação
  • Rodger A; Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
  • Steel MJ; Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia.
  • Goodchild SC; Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
  • Chmel NP; Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
  • Reason A; BioPharmaSpec Ltd., Lido Medical Centre, St. Saviour, Jersey JE2 7LA, UK.
QRB Discov ; 1: e8, 2020.
Article em En | MEDLINE | ID: mdl-37528957
ABSTRACT
Infrared (IR) spectroscopy is increasingly being used to probe the secondary structure of proteins, especially for high-concentration samples and biopharmaceuticals in complex formulation vehicles. However, the small path lengths required for aqueous protein transmission experiments, due to high water absorbance in the amide I region of the spectrum, means that the path length is not accurately known, so only the shape of the band is ever considered. This throws away a dimension of information. Attenuated total reflectance (ATR) IR spectroscopy is much easier to implement than transmission IR spectroscopy and, for a given instrument and sample, gives reproducible spectra. However, the ATR-absorbance spectrum varies with sample concentration and instrument configuration, and its wavenumber dependence differs significantly from that observed in transmission spectroscopy. In this paper, we determine, for the first time, how to transform water and aqueous protein ATR spectra into the corresponding transmission spectra with appropriate spectral shapes and intensities. The approach is illustrated by application to water, concanavalin A, haemoglobin and lysozyme. The transformation is only as good as the available water refractive index data. A hybrid of literature data provides the best results. The transformation also allows the angle of incidence of an ATR crystal to be determined. This opens the way to using both spectral shape and spectra intensity for protein structure fitting.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article