Fetal weight estimation based on deep neural network: a retrospective observational study.
BMC Pregnancy Childbirth
; 23(1): 560, 2023 Aug 02.
Article
em En
| MEDLINE
| ID: mdl-37533038
BACKGROUND: Improving the accuracy of estimated fetal weight (EFW) calculation can contribute to decision-making for obstetricians and decrease perinatal complications. This study aimed to develop a deep neural network (DNN) model for EFW based on obstetric electronic health records. METHODS: This study retrospectively analyzed the electronic health records of pregnant women with live births delivery at the obstetrics department of International Peace Maternity & Child Health Hospital between January 2016 and December 2018. The DNN model was evaluated using Hadlock's formula and multiple linear regression. RESULTS: A total of 34824 live births (23922 primiparas) from 49896 pregnant women were analyzed. The root-mean-square error of DNN model was 189.64 g (95% CI 187.95 g-191.16 g), and the mean absolute percentage error was 5.79% (95%CI: 5.70%-5.81%), significantly lower compared to Hadlock's formula (240.36 g and 6.46%, respectively). By combining with previously unreported factors, such as birth weight of prior pregnancies, a concise and effective DNN model was built based on only 10 parameters. Accuracy rate of a new model increased from 76.08% to 83.87%, with root-mean-square error of only 243.80 g. CONCLUSIONS: Proposed DNN model for EFW calculation is more accurate than previous approaches in this area and be adopted for better decision making related to fetal monitoring.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Ultrassonografia Pré-Natal
/
Peso Fetal
Tipo de estudo:
Diagnostic_studies
/
Observational_studies
/
Prognostic_studies
Limite:
Child
/
Female
/
Humans
/
Pregnancy
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article