Your browser doesn't support javascript.
loading
The fate and supply capacity of potassium in biochar used in agriculture.
Xiu, Liqun; Gu, Wenqi; Sun, Yuanyuan; Wu, Di; Wang, Yuning; Zhang, Honggui; Zhang, Weiming; Chen, Wenfu.
Afiliação
  • Xiu L; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China.
  • Gu W; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China.
  • Sun Y; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China.
  • Wu D; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China.
  • Wang Y; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China.
  • Zhang H; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China.
  • Zhang W; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China. Electronic address: bio
  • Chen W; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China. Electronic address: wfc
Sci Total Environ ; 902: 165969, 2023 Dec 01.
Article em En | MEDLINE | ID: mdl-37541494
ABSTRACT
We used chemical extraction, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) to study the potassium (K) in biochar prepared from corn straw at different temperatures (300 °C, 500 °C, 700 °C and 900 °C). The characteristics of biochar were analyzed through Fourier transform infrared spectroscopy (FTIR) and specific surface area analysis. We found that the potassium in biochar can be divided into water soluble potassium, exchangeable potassium, non-exchangeable potassium, and insoluble potassium according to the availability of agricultural potassium. The fate of potassium in straw changed as follows with increasing pyrolysis temperature, the proportion of the sum of exchangeable and non-exchangeable potassium decreased, and the proportions of insoluble and lost potassium increased. The total, water soluble and exchangeable potassium contents in biochar were highest at 700 °C. The non-exchangeable and insoluble potassium contents were highest at 300 °C and 900 °C, respectively. Kinetics experiments were conducted to determine the different fates of potassium released from biochar at different temperatures; pot experiments were also undertaken. The release of different forms of potassium in biochar at different temperatures is mainly dominated by heterogeneous diffusion. Biochar increased not only the content of different forms of potassium in soil but also the potassium content of soybean stems and leaves. We calculated the potassium supply capacity of biochar by two strategies, measurements of the potassium content in biochar and the conversion rate of potassium in straw during pyrolysis. The most active and efficient potassium supply capacities were 33.60 g·kg-1 and 9.53 g·kg-1 at 700 °C and 300 °C, respectively. Biochar provides readily available (water soluble and exchangeable) potassium and a long-term (non-exchangeable) potassium supply to soil.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Potássio / Carvão Vegetal Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Potássio / Carvão Vegetal Idioma: En Ano de publicação: 2023 Tipo de documento: Article