Your browser doesn't support javascript.
loading
Method for the definitive detection of orbital angular momentum states in neutrons by spin-polarized 3He.
Jach, Terrence; Vinson, John.
Afiliação
  • Jach T; Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA.
  • Vinson J; Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA.
Phys Rev C ; 105(6)2022 Jun.
Article em En | MEDLINE | ID: mdl-37554347
ABSTRACT
A standard method to detect thermal neutrons is the nuclear interaction 3He(n,p)3H. The spin dependence of this interaction is also the basis of a neutron spin-polarization filter using nuclear polarized 3He. We consider the corresponding interaction for neutrons placed in an intrinsic orbital angular momentum (OAM) state. We derive the relative polarization-dependent absorption cross sections for neutrons in an L=1 OAM state. The absorption of those neutrons results in compound states Jπ=0-, 1-, and 2-. Varying the three available polarizations tests that an OAM neutron has been absorbed and probes which decay states are physically possible. We describe the energetically likely excited states of 4He after absorption, taking account of the odd parity of the compound state. This provides a definitive method for detecting neutron OAM states and suggests that intrinsic OAM states offer the possibility to observe new physics, including anomalous cross sections and new channels of radioactive decay.

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2022 Tipo de documento: Article