Your browser doesn't support javascript.
loading
Molecular investigation of TSHR gene in Bangladeshi congenital hypothyroid patients.
Begum, Mst Noorjahan; Mahtarin, Rumana; Islam, Md Tarikul; Ahmed, Sinthyia; Konika, Tasnia Kawsar; Mannoor, Kaiissar; Akhteruzzaman, Sharif; Qadri, Firdausi.
Afiliação
  • Begum MN; Institute for Developing Science and Health Initiatives (ideSHi), ECB Chattar, Mirpur, Dhaka, Bangladesh.
  • Mahtarin R; Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh.
  • Islam MT; Virology Laboratory, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Mohakhali, Dhaka, Bangladesh.
  • Ahmed S; Institute for Developing Science and Health Initiatives (ideSHi), ECB Chattar, Mirpur, Dhaka, Bangladesh.
  • Konika TK; Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
  • Mannoor K; Institute for Developing Science and Health Initiatives (ideSHi), ECB Chattar, Mirpur, Dhaka, Bangladesh.
  • Akhteruzzaman S; Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, Tejgaon, Dhaka, Bangladesh.
  • Qadri F; Nuclear Medicine and Allied Sciences, Bangabandhu Sheikh Mujib Medical University (BSMMU), Shahbag, Dhaka, Bangladesh.
PLoS One ; 18(8): e0282553, 2023.
Article em En | MEDLINE | ID: mdl-37561783
ABSTRACT
The disorder of thyroid gland development or thyroid dysgenesis accounts for 80-85% of congenital hypothyroidism (CH) cases. Mutations in the TSHR gene are mostly associated with thyroid dysgenesis, and prevent or disrupt normal development of the gland. There is limited data available on the genetic spectrum of congenital hypothyroid children in Bangladesh. Thus, an understanding of the molecular aetiology of thyroid dysgenesis is a prerequisite. The aim of the study was to investigate the effect of mutations in the TSHR gene on the small molecule thyrogenic drug-binding site of the protein. We identified two nonsynonymous mutations (p.Ser508Leu, p.Glu727Asp) in the exon 10 of the TSHR gene in 21 patients with dysgenesis by sequencing-based analysis. Later, the TSHR368-764 protein was modeled by the I-TASSER server for wild-type and mutant structures. The model proteins were targeted by thyrogenic drugs, MS437 and MS438 to perceive the effect of mutations. The damaging effect in drug-protein complexes of mutants was explored by molecular docking and molecular dynamics simulations. The binding affinity of wild-type protein was much higher than the mutant cases for both of the drug ligands (MS437 and MS438). Molecular dynamics simulates the dynamic behavior of wild-type and mutant complexes. MS437-TSHR368-764MT2 and MS438-TSHR368-764MT1 showed stable conformations in biological environments. Finally, Principle Component Analysis revealed structural and energy profile discrepancies. TSHR368-764MT1 exhibited much more variations than TSHR368-764WT and TSHR368-764MT2, emphasizing a more damaging pattern in TSHR368-764MT1. This genetic study might be helpful to explore the mutational impact on drug binding sites of TSHR protein which is important for future drug design and selection for the treatment of congenital hypothyroid children with dysgenesis.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hipotireoidismo Congênito / Disgenesia da Tireoide Limite: Child / Humans País como assunto: Asia Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hipotireoidismo Congênito / Disgenesia da Tireoide Limite: Child / Humans País como assunto: Asia Idioma: En Ano de publicação: 2023 Tipo de documento: Article