Your browser doesn't support javascript.
loading
Goldenseal-Mediated Inhibition of Intestinal Uptake Transporters Decreases Metformin Systemic Exposure in Mice.
Oyanna, Victoria O; Garcia-Torres, Kenisha Y; Bechtold, Baron J; Lynch, Katherine D; Call, M Ridge; Horváth, Miklós; Manwill, Preston K; Graf, Tyler N; Cech, Nadja B; Oberlies, Nicholas H; Paine, Mary F; Clarke, John D.
Afiliação
  • Oyanna VO; Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnol
  • Garcia-Torres KY; Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnol
  • Bechtold BJ; Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnol
  • Lynch KD; Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnol
  • Call MR; Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnol
  • Horváth M; Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnol
  • Manwill PK; Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnol
  • Graf TN; Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnol
  • Cech NB; Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnol
  • Oberlies NH; Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnol
  • Paine MF; Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnol
  • Clarke JD; Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnol
Drug Metab Dispos ; 51(11): 1483-1489, 2023 11.
Article em En | MEDLINE | ID: mdl-37562957
ABSTRACT
Goldenseal is a perennial plant native to eastern North America. A recent clinical study reported goldenseal decreased metformin Cmax and area under the blood concentration versus time curve (AUC) by 27% and 23%, respectively, but half-life and renal clearance were unchanged. These observations suggested goldenseal altered processes involved in metformin absorption. The underlying mechanism(s) remain(s) unknown. One mechanism for the decreased metformin systemic exposure is inhibition by goldenseal of intestinal uptake transporters involved in metformin absorption. Goldenseal extract and three goldenseal alkaloids (berberine, (-)-ß-hydrastine, hydrastinine) were tested as inhibitors of organic cation transporter (OCT) 3, plasma membrane monoamine transporter (PMAT), and thiamine transporter (THTR) 2 using human embryonic kidney 293 cells overexpressing each transporter. The goldenseal extract, normalized to berberine content, was the strongest inhibitor of each transporter (IC50 4.9, 13.1, and 5.8 µM for OCT3, PMAT, and THTR2, respectively). A pharmacokinetic study in mice compared the effects of berberine, (-)-ß-hydrastine, goldenseal extract, and imatinib (OCT inhibitor) on orally administered metformin. Goldenseal extract and imatinib significantly decreased metformin Cmax by 31% and 25%, respectively, and had no effect on half-life. Berberine and (-)-ß-hydrastine had no effect on metformin pharmacokinetics, indicating neither alkaloid alone precipitated the interaction in vivo. A follow-up murine study involving intravenous metformin and oral inhibitors examined the contributions of basolateral enteric/hepatic uptake transporters to the goldenseal-metformin interaction. Goldenseal extract and imatinib had no effect on metformin AUC and half-life, suggesting lack of inhibition of basolateral enteric/hepatic uptake transporters. Results may have implications for patients taking goldenseal with drugs that are substrates for OCT3 and THTR2. SIGNIFICANCE STATEMENT Goldenseal is used to self-treat respiratory infections and digestive disorders. We investigated potential mechanisms for the clinical pharmacokinetic interaction observed between goldenseal and metformin, specifically inhibition by goldenseal of intestinal uptake transporters (OCT3, PMAT, THTR2) involved in metformin absorption. Goldenseal extract inhibited all three transporters in vitro and decreased metformin systemic exposure in mice. These data may have broader implications for patients co-consuming goldenseal with other drugs that are substrates for these transporters.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Berberina / Hydrastis / Alcaloides / Metformina Limite: Animals / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Berberina / Hydrastis / Alcaloides / Metformina Limite: Animals / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article