Your browser doesn't support javascript.
loading
Experimental and Numerical Study of Al2219 Powders Deposition on Al2219-T6 Substrate by Cold Spray: Effects of Spray Angle, Traverse Speed, and Standoff Distance.
Zhang, Zheng; Meng, Tzee Luai; Lee, Coryl Jing Jun; Wei, Fengxia; Ba, Te; Zhang, Zhi-Qian; Pan, Jisheng.
Afiliação
  • Zhang Z; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.
  • Meng TL; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.
  • Lee CJJ; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.
  • Wei F; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.
  • Ba T; Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis #16-16, Singapore 138632, Singapore.
  • Zhang ZQ; Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis #16-16, Singapore 138632, Singapore.
  • Pan J; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.
Materials (Basel) ; 16(15)2023 Jul 26.
Article em En | MEDLINE | ID: mdl-37569945
Cold spray (CS) is an emerging technology for repairing and 3D additive manufacturing of a variety of metallic components using deformable metal powders. In CS deposition, gas type, gas pressure, gas temperature, and powder feed rate are the four key process parameters that have been intensively studied. Spray angle, spray gun traverse speed, and standoff distance (SoD) are the other three process parameters that have been less investigated but are also important, especially when depositing on uneven substrates or building up 3D freeform structures. Herein, the effects of spray angle, traverse speed, and SoD during CS deposition have been investigated holistically on a single material system (i.e., Al2219 powders on Al2219-T6 substrate). The coatings' mass gain, thickness, porosity, and residual stress have been characterized, and the results show that spray angle and traverse speed exercise much more effects than SoD in determining coatings' buildup. Finite element method (FEM) modeling and computational fluid dynamic (CFD) simulation have been carried out to understand the effects of these three parameters for implementing CS as repairing and additive manufacturing using aluminum-based alloy powders.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article