Your browser doesn't support javascript.
loading
Training doctoral students in critical thinking and experimental design using problem-based learning.
Schaller, Michael D; Gencheva, Marieta; Gunther, Michael R; Weed, Scott A.
Afiliação
  • Schaller MD; Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Robert C. Byrd Health Sciences Center 64 Medical Center Drive, P.O. Box 9142, Morgantown, WV, 26506, USA. mschaller@hsc.wvu.edu.
  • Gencheva M; Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Robert C. Byrd Health Sciences Center 64 Medical Center Drive, P.O. Box 9142, Morgantown, WV, 26506, USA.
  • Gunther MR; Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Robert C. Byrd Health Sciences Center 64 Medical Center Drive, P.O. Box 9142, Morgantown, WV, 26506, USA.
  • Weed SA; Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Robert C. Byrd Health Sciences Center 64 Medical Center Drive, P.O. Box 9142, Morgantown, WV, 26506, USA.
BMC Med Educ ; 23(1): 579, 2023 Aug 16.
Article em En | MEDLINE | ID: mdl-37587476
BACKGROUND: Traditionally, doctoral student education in the biomedical sciences relies on didactic coursework to build a foundation of scientific knowledge and an apprenticeship model of training in the laboratory of an established investigator. Recent recommendations for revision of graduate training include the utilization of graduate student competencies to assess progress and the introduction of novel curricula focused on development of skills, rather than accumulation of facts. Evidence demonstrates that active learning approaches are effective. Several facets of active learning are components of problem-based learning (PBL), which is a teaching modality where student learning is self-directed toward solving problems in a relevant context. These concepts were combined and incorporated in creating a new introductory graduate course designed to develop scientific skills (student competencies) in matriculating doctoral students using a PBL format. METHODS: Evaluation of course effectiveness was measured using the principals of the Kirkpatrick Four Level Model of Evaluation. At the end of each course offering, students completed evaluation surveys on the course and instructors to assess their perceptions of training effectiveness. Pre- and post-tests assessing students' proficiency in experimental design were used to measure student learning. RESULTS: The analysis of the outcomes of the course suggests the training is effective in improving experimental design. The course was well received by the students as measured by student evaluations (Kirkpatrick Model Level 1). Improved scores on post-tests indicate that the students learned from the experience (Kirkpatrick Model Level 2). A template is provided for the implementation of similar courses at other institutions. CONCLUSIONS: This problem-based learning course appears effective in training newly matriculated graduate students in the required skills for designing experiments to test specific hypotheses, enhancing student preparation prior to initiation of their dissertation research.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Projetos de Pesquisa / Aprendizagem Baseada em Problemas Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Projetos de Pesquisa / Aprendizagem Baseada em Problemas Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article