Your browser doesn't support javascript.
loading
A genome-wide atlas of human cell morphology.
Ramezani, Meraj; Bauman, Julia; Singh, Avtar; Weisbart, Erin; Yong, John; Lozada, Maria; Way, Gregory P; Kavari, Sanam L; Diaz, Celeste; Haghighi, Marzieh; Batista, Thiago M; Pérez-Schindler, Joaquín; Claussnitzer, Melina; Singh, Shantanu; Cimini, Beth A; Blainey, Paul C; Carpenter, Anne E; Jan, Calvin H; Neal, James T.
Afiliação
  • Ramezani M; Broad Institute of MIT & Harvard, Cambridge, MA, USA.
  • Bauman J; Type 2 Diabetes Systems Genomics Initiative of the Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Singh A; Broad Institute of MIT & Harvard, Cambridge, MA, USA.
  • Weisbart E; Current address: Stanford University, Stanford, CA, USA.
  • Yong J; Broad Institute of MIT & Harvard, Cambridge, MA, USA.
  • Lozada M; Current address: Genentech Department of Cellular and Tissue Genomics, South San Francisco, CA, USA.
  • Way GP; Broad Institute of MIT & Harvard, Cambridge, MA, USA.
  • Kavari SL; Calico Life Sciences LLC, South San Francisco, CA, USA.
  • Diaz C; Broad Institute of MIT & Harvard, Cambridge, MA, USA.
  • Haghighi M; Type 2 Diabetes Systems Genomics Initiative of the Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Batista TM; Broad Institute of MIT & Harvard, Cambridge, MA, USA.
  • Pérez-Schindler J; Current address: Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, USA.
  • Claussnitzer M; Broad Institute of MIT & Harvard, Cambridge, MA, USA.
  • Singh S; Current address: University of Pennsylvania, Philadelphia, PA, USA.
  • Cimini BA; Broad Institute of MIT & Harvard, Cambridge, MA, USA.
  • Blainey PC; Current address: Stanford University, Stanford, CA, USA.
  • Carpenter AE; Broad Institute of MIT & Harvard, Cambridge, MA, USA.
  • Jan CH; Type 2 Diabetes Systems Genomics Initiative of the Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Neal JT; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease at Broad Institute, Cambridge, MA, USA.
bioRxiv ; 2023 Aug 07.
Article em En | MEDLINE | ID: mdl-37609130
ABSTRACT
A key challenge of the modern genomics era is developing data-driven representations of gene function. Here, we present the first unbiased morphology-based genome-wide perturbation atlas in human cells, containing three genome-scale genotype-phenotype maps comprising >20,000 single-gene CRISPR-Cas9-based knockout experiments in >30 million cells. Our optical pooled cell profiling approach (PERISCOPE) combines a de-stainable high-dimensional phenotyping panel (based on Cell Painting1,2) with optical sequencing of molecular barcodes and a scalable open-source analysis pipeline to facilitate massively parallel screening of pooled perturbation libraries. This approach provides high-dimensional phenotypic profiles of individual cells, while simultaneously enabling interrogation of subcellular processes. Our atlas reconstructs known pathways and protein-protein interaction networks, identifies culture media-specific responses to gene knockout, and clusters thousands of human genes by phenotypic similarity. Using this atlas, we identify the poorly-characterized disease-associated transmembrane protein TMEM251/LYSET as a Golgi-resident protein essential for mannose-6-phosphate-dependent trafficking of lysosomal enzymes, showing the power of these representations. In sum, our atlas and screening technology represent a rich and accessible resource for connecting genes to cellular functions at scale.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article