Your browser doesn't support javascript.
loading
Chemical probes and methods for the study of protein arginine methylation.
Brown, Tyler; Nguyen, Terry; Zhou, Bo; Zheng, Y George.
Afiliação
  • Brown T; Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA yzheng@uga.edu +1-(706) 542-5358 +1-(706) 542-0277.
  • Nguyen T; Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA yzheng@uga.edu +1-(706) 542-5358 +1-(706) 542-0277.
  • Zhou B; Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA yzheng@uga.edu +1-(706) 542-5358 +1-(706) 542-0277.
  • Zheng YG; Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA yzheng@uga.edu +1-(706) 542-5358 +1-(706) 542-0277.
RSC Chem Biol ; 4(9): 647-669, 2023 Aug 30.
Article em En | MEDLINE | ID: mdl-37654509
ABSTRACT
Protein arginine methylation is a widespread post-translational modification (PTM) in eukaryotic cells. This chemical modification in proteins functionally modulates diverse cellular processes from signal transduction, gene expression, and DNA damage repair to RNA splicing. The chemistry of arginine methylation entails the transfer of the methyl group from S-adenosyl-l-methionine (AdoMet, SAM) onto a guanidino nitrogen atom of an arginine residue of a target protein. This reaction is catalyzed by about 10 members of protein arginine methyltransferases (PRMTs). With impacts on a variety of cellular processes, aberrant expression and activity of PRMTs have been shown in many disease conditions. Particularly in oncology, PRMTs are commonly overexpressed in many cancerous tissues and positively correlated with tumor initiation, development and progression. As such, targeting PRMTs is increasingly recognized as an appealing therapeutic strategy for new drug discovery. In the past decade, a great deal of research efforts has been invested in illuminating PRMT functions in diseases and developing chemical probes for the mechanistic study of PRMTs in biological systems. In this review, we provide a brief developmental history of arginine methylation along with some key updates in arginine methylation research, with a particular emphasis on the chemical aspects of arginine methylation. We highlight the research endeavors for the development and application of chemical approaches and chemical tools for the study of functions of PRMTs and arginine methylation in regulating biology and disease.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article