Your browser doesn't support javascript.
loading
Improved topography measurement with a high dynamic range using phase difference sensing technology.
Opt Lett ; 48(17): 4657-4660, 2023 Sep 01.
Article em En | MEDLINE | ID: mdl-37656579
ABSTRACT
Phase difference sensing technology (PDST) is employed for topography measurement, and two interference structures are proposed to achieve upper-limit adjustment and high resolution in the measurement range a dual-wavelength system with a single Fabry-Perot (FP) cavity and a single-wavelength system with dual FP cavities. The phase difference between the two interference signals is determined by an elliptic fitting algorithm (EFA), and this change in phase difference is utilized to characterize the step height. Experimental results indicate that the measurement upper-limit can be adjusted to either 410 µm, 187 µm, or 108 µm by varying the wavelength difference in the dual-wavelength system, which gives a measurement error of 2.96%. In contrast, while offering a measurement resolution of 3.47 nm, the single-wavelength system exhibits a measurement error of 5.38%. The proposed method is capable of satisfying the measurement requirements during micro-electromechanical system (MEMS) processing with proficiency.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article