Your browser doesn't support javascript.
loading
Seasonal dynamics of dissolved organic matter bioavailability coupling with water mass circulation in the South Yellow Sea.
Liang, Shengkang; Zhang, Mingzheng; Wang, Xinke; Li, Hongguan; Li, Shanshan; Ma, Haoyang; Wang, Xiulin; Rong, Zengrui.
Afiliação
  • Liang S; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; C
  • Zhang M; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
  • Wang X; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
  • Li H; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
  • Li S; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
  • Ma H; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
  • Wang X; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
  • Rong Z; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China. Electronic address: rongzr@ouc.edu.cn.
Sci Total Environ ; 904: 166671, 2023 Dec 15.
Article em En | MEDLINE | ID: mdl-37657546
ABSTRACT
As a typical shelf-marginal sea, the South Yellow Sea (SYS) is significantly influenced by various factors such as land-based inputs and water mass movements, leading the complex biogeochemical processes of dissolved organic matter (DOM) to become highly dynamic. However, the bioavailability of dissolved organic matter (DOM) coupled with water mass circulation has not been accurately assessed, despite being crucial for understanding the source-sink pattern of organic carbon in marginal sea. In this study, four cruises were conducted in the SYS to analyze the spatial and temporal distribution characteristics of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and total dissolved amino acids (TDAA). Combined with the bioassay experiments, TDAA carbon normalized yield [TDAA (%DOC)] and TDAA degradation index (DIAA) were used as indicators to explore the bioavailability of DOM across different water masses. Results show that the DOC of the SYS exhibits higher average value in late autumn and early winter, and lower value in spring and summer due to the seasonal alternation of water mass and biological activities. The collective results indicate that DOM bioavailability is higher in the Changjiang River diluted water (CDW) and lower in the Yellow Sea warm current (YSWC) and the Yellow Sea cold water mass (YSCWM). Approximately 20 % of DON can be degraded in the YSCWM during autumn. Notably, although the YSCWM constitutes merely constitutes 10 % of the SYS volume, it stores 18.1 % dissolved inorganic nitrogen (DIN) and 23.9 % PO43- of total nutrients, indicating that the YSCWM is a significant nutrient reservoir within the SYS.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article