Your browser doesn't support javascript.
loading
Controllable-morphology polymer blend photonic metafoam for radiative cooling.
Wang, Yajie; Wang, Tiecheng; Liang, Jun; Wu, Jiawei; Yang, Maiping; Pan, Yamin; Hou, Chong; Liu, Chuntai; Shen, Changyu; Tao, Guangming; Liu, Xianhu.
Afiliação
  • Wang Y; College of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Wenhua Road 97-1, Zhengzhou, 450002, P. R. China.
  • Wang T; College of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Wenhua Road 97-1, Zhengzhou, 450002, P. R. China.
  • Liang J; Wuhan National Laboratory for Optoelectronics, School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China. tao@hust.edu.cn.
  • Wu J; Wuhan National Laboratory for Optoelectronics, School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China. tao@hust.edu.cn.
  • Yang M; Wuhan National Laboratory for Optoelectronics, School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China. tao@hust.edu.cn.
  • Pan Y; College of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Wenhua Road 97-1, Zhengzhou, 450002, P. R. China.
  • Hou C; Wuhan National Laboratory for Optoelectronics, School of Optics and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China.
  • Liu C; College of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Wenhua Road 97-1, Zhengzhou, 450002, P. R. China.
  • Shen C; College of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Wenhua Road 97-1, Zhengzhou, 450002, P. R. China.
  • Tao G; Wuhan National Laboratory for Optoelectronics, School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China. tao@hust.edu.cn.
  • Liu X; College of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Wenhua Road 97-1, Zhengzhou, 450002, P. R. China.
Mater Horiz ; 10(11): 5060-5070, 2023 Oct 30.
Article em En | MEDLINE | ID: mdl-37661692

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article