Your browser doesn't support javascript.
loading
Hypoxia-regulated secretion of IL-12 enhances antitumor activity and safety of CD19 CAR-T cells in the treatment of DLBCL.
Zhou, Wenping; Miao, Jinxin; Cheng, Zhenguo; Wang, Zhimin; Wang, Jianyao; Guo, Haoran; Wang, Pengju; Lu, Shuangshuang; Si, Lingling; Zhang, Zhongxian; Dunmall, Louisa Chard; Liu, Yanyan; Lemoine, Nicholas R; Wang, Yaohe.
Afiliação
  • Zhou W; Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.
  • Miao J; Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
  • Cheng Z; Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.
  • Wang Z; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 45006, China.
  • Wang J; Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.
  • Guo H; Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.
  • Wang P; Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.
  • Lu S; Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.
  • Si L; Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.
  • Zhang Z; Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.
  • Dunmall LC; Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.
  • Liu Y; Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.
  • Lemoine NR; Center for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ London, UK.
  • Wang Y; Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
Mol Ther Oncolytics ; 30: 216-226, 2023 Sep 21.
Article em En | MEDLINE | ID: mdl-37663131
ABSTRACT
CD19-targeted chimeric antigen receptor-modified T (CD19 CAR-T) cell therapy has been demonstrated as one of the most promising therapeutic strategies for treating B cell malignancies. However, it has shown limited treatment efficacy for diffuse large B cell lymphoma (DLBCL). This is, in part, due to the tumor heterogeneity and the hostile tumor microenvironment. Human interleukin-12 (IL-12), as a potent antitumor cytokine, has delivered encouraging outcomes in preclinical studies of DLBCL. However, potentially lethal toxicity associated with systemic administration precludes its clinical application. Here, an armed CD19 CAR expressing hypoxia-regulated IL-12 was developed (CAR19/hIL12ODD). In this vector, IL-12 secretion was restricted to hypoxic microenvironments within the tumor site by fusion of IL-12 with the oxygen degradation domain (ODD) of HIF1α. In vitro, CAR19/hIL12ODD-T cells could only secrete bioactive IL-12 under hypoxic conditions, accompanied by enhanced proliferation, robust IFN-γ secretion, increased abundance of CD4+, and central memorycell phenotype. In vivo, adoptive transfer of CAR19/hIL12ODD-T cells significantly enhanced regression of large, established DLBCL xenografts in a novel immunodeficient Syrian hamster model. Notably, this targeted and controlled IL-12 treatment was without toxicity in this model. Taken together, our results suggest that armed CD19 CARs with hypoxia-controlled IL-12 (CAR19/hIL12ODD) might be a promising and safer approach for treating DLBCL.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article