Your browser doesn't support javascript.
loading
Machine learning-based quantification for disease uncertainty increases the statistical power of genetic association studies.
Park, Jun Young; Lee, Jang Jae; Lee, Younghwa; Lee, Dongsoo; Gim, Jungsoo; Farrer, Lindsay; Lee, Kun Ho; Won, Sungho.
Afiliação
  • Park JY; Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Korea.
  • Lee JJ; Neurozen Inc., Seoul 06168, Korea.
  • Lee Y; Gwangju Alzheimer's & Related Dementia Cohort Research Center, Chosun University, Gwangju 61452, Korea.
  • Lee D; Gwangju Alzheimer's & Related Dementia Cohort Research Center, Chosun University, Gwangju 61452, Korea.
  • Gim J; Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Korea.
  • Farrer L; Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Korea.
  • Lee KH; Gwangju Alzheimer's & Related Dementia Cohort Research Center, Chosun University, Gwangju 61452, Korea.
  • Won S; Department of Biomedical Science, Chosun University, Gwangju 61452, Korea.
Bioinformatics ; 39(9)2023 09 02.
Article em En | MEDLINE | ID: mdl-37665736
MOTIVATION: Allowance for increasingly large samples is a key to identify the association of genetic variants with Alzheimer's disease (AD) in genome-wide association studies (GWAS). Accordingly, we aimed to develop a method that incorporates patients with mild cognitive impairment and unknown cognitive status in GWAS using a machine learning-based AD prediction model. RESULTS: Simulation analyses showed that weighting imputed phenotypes method increased the statistical power compared to ordinary logistic regression using only AD cases and controls. Applied to real-world data, the penalized logistic method had the highest AUC (0.96) for AD prediction and weighting imputed phenotypes method performed well in terms of power. We identified an association (P<5.0×10-8) of AD with several variants in the APOE region and rs143625563 in LMX1A. Our method, which allows the inclusion of individuals with mild cognitive impairment, improves the statistical power of GWAS for AD. We discovered a novel association with LMX1A. AVAILABILITY AND IMPLEMENTATION: Simulation codes can be accessed at https://github.com/Junkkkk/wGEE_GWAS.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Estudo de Associação Genômica Ampla / Doença de Alzheimer Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Estudo de Associação Genômica Ampla / Doença de Alzheimer Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article