Your browser doesn't support javascript.
loading
Preclinical Evidence for the Glucocorticoid-Sparing Potential of a Dual Toll-Like Receptor 7/8 Inhibitor in Autoimmune Diseases.
Deshmukh, Ankita; Pereira, Albertina; Geraci, Nicholas; Tzvetkov, Evgeni; Przetak, Melinda; Catalina, Michelle D; Morand, Eric F; Bender, Andrew T; Vaidyanathan, Bharat.
Afiliação
  • Deshmukh A; Research Unit - Neuroscience and Immunology, EMD Serono, Billerica, Massachusetts (A.D., A.P., N.G., E.T., M.P., M.D.C., A.T. B., B.V.) and School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia (E.F.M.).
  • Pereira A; Research Unit - Neuroscience and Immunology, EMD Serono, Billerica, Massachusetts (A.D., A.P., N.G., E.T., M.P., M.D.C., A.T. B., B.V.) and School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia (E.F.M.).
  • Geraci N; Research Unit - Neuroscience and Immunology, EMD Serono, Billerica, Massachusetts (A.D., A.P., N.G., E.T., M.P., M.D.C., A.T. B., B.V.) and School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia (E.F.M.).
  • Tzvetkov E; Research Unit - Neuroscience and Immunology, EMD Serono, Billerica, Massachusetts (A.D., A.P., N.G., E.T., M.P., M.D.C., A.T. B., B.V.) and School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia (E.F.M.).
  • Przetak M; Research Unit - Neuroscience and Immunology, EMD Serono, Billerica, Massachusetts (A.D., A.P., N.G., E.T., M.P., M.D.C., A.T. B., B.V.) and School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia (E.F.M.).
  • Catalina MD; Research Unit - Neuroscience and Immunology, EMD Serono, Billerica, Massachusetts (A.D., A.P., N.G., E.T., M.P., M.D.C., A.T. B., B.V.) and School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia (E.F.M.).
  • Morand EF; Research Unit - Neuroscience and Immunology, EMD Serono, Billerica, Massachusetts (A.D., A.P., N.G., E.T., M.P., M.D.C., A.T. B., B.V.) and School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia (E.F.M.).
  • Bender AT; Research Unit - Neuroscience and Immunology, EMD Serono, Billerica, Massachusetts (A.D., A.P., N.G., E.T., M.P., M.D.C., A.T. B., B.V.) and School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia (E.F.M.).
  • Vaidyanathan B; Research Unit - Neuroscience and Immunology, EMD Serono, Billerica, Massachusetts (A.D., A.P., N.G., E.T., M.P., M.D.C., A.T. B., B.V.) and School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia (E.F.M.) bharat.vaidyanathan@emdserono.com.
J Pharmacol Exp Ther ; 388(3): 751-764, 2024 02 15.
Article em En | MEDLINE | ID: mdl-37673681
Toll-like receptor 7 (TLR7) and TLR8 are single-stranded RNA-sensing endosomal pattern recognition receptors that evolved to defend against viral infections. However, aberrant TLR7/8 activation by endogenous ligands has been implicated in the pathogenesis of autoimmune diseases including systemic lupus erythematosus. TLR activation and type I interferon (IFN) were shown recently to impart resistance to glucocorticoids (GC), which are part of the standard of care for multiple autoimmune diseases. While GCs are effective, a plethora of undesirable effects limit their use. New treatment approaches that allow for the use of lower and safer doses of GCs would be highly beneficial. Herein, we report that a dual TLR7/8 inhibitor (TLR7/8i) increases the effectiveness of GCs in inflammatory settings. Human peripheral blood mononuclear cell studies revealed increased GC sensitivity in the presence of TLR7/8i for reducing inflammatory cytokine production, a synergistic effect that was most pronounced in myeloid cells, particularly monocytes. Gene expression analysis by NanoString and single-cell RNA sequencing revealed that myeloid cells were substantially impacted by combining low-dose TLR7/8i and GC, as evidenced by the effects on nuclear factor-kappa B-regulated cytokines and GC-response genes, although IFNs were affected to a smaller degree. Low dose of TLR7/8i plus GC was more efficacious then either agent alone in the MRL/lpr mouse model of lupus, with improved proteinuria and survival. Overall, our findings indicate a GC-sparing potential for TLR7/8i compounds, suggesting TLR7/8i may offer a new strategy for the treatment of autoimmune diseases. SIGNIFICANCE STATEMENT: Some features of autoimmune diseases may be resistant to glucocorticoids, mediated at least in part by toll-like receptor (TLR) activation, necessitating higher doses that are associated with considerable toxicities. We demonstrate that TLR7/8 inhibition and glucocorticoids work synergistically to reduce inflammation in a cell-type specific manner and suppress disease in a mouse model of lupus. TLR7/8 inhibition is a promising strategy for the treatment of autoimmune diseases and has glucocorticoid-sparing potential.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Receptor 7 Toll-Like / Lúpus Eritematoso Sistêmico Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Receptor 7 Toll-Like / Lúpus Eritematoso Sistêmico Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article