Your browser doesn't support javascript.
loading
Abnormal higher-order network interactions in Parkinson's disease visual hallucinations.
Tan, Joshua B; Müller, Eli J; Orlando, Isabella F; Taylor, Natasha L; Margulies, Daniel S; Szeto, Jennifer; Lewis, Simon J G; Shine, James M; O'Callaghan, Claire.
Afiliação
  • Tan JB; Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia.
  • Müller EJ; Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia.
  • Orlando IF; Centre for Complex Systems, School of Physics, University of Sydney, Sydney 2050, Australia.
  • Taylor NL; Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia.
  • Margulies DS; Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia.
  • Szeto J; Integrative Neuroscience and Cognition Center, Center National de la Recherche Scientifique (CNRS) and Université de Paris, 75006 Paris, France.
  • Lewis SJG; Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia.
  • Shine JM; Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia.
  • O'Callaghan C; Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia.
Brain ; 147(2): 458-471, 2024 02 01.
Article em En | MEDLINE | ID: mdl-37677056
ABSTRACT
Visual hallucinations in Parkinson's disease can be viewed from a systems-level perspective, whereby dysfunctional communication between brain networks responsible for perception predisposes a person to hallucinate. To this end, abnormal functional interactions between higher-order and primary sensory networks have been implicated in the pathophysiology of visual hallucinations in Parkinson's disease, however the precise signatures remain to be determined. Dimensionality reduction techniques offer a novel means for simplifying the interpretation of multidimensional brain imaging data, identifying hierarchical patterns in the data that are driven by both within- and between-functional network changes. Here, we applied two complementary non-linear dimensionality reduction techniques-diffusion-map embedding and t-distributed stochastic neighbour embedding (t-SNE)-to resting state functional MRI data, in order to characterize the altered functional hierarchy associated with susceptibility to visual hallucinations. Our study involved 77 people with Parkinson's disease (31 with hallucinations; 46 without hallucinations) and 19 age-matched healthy control subjects. In patients with visual hallucinations, we found compression of the unimodal-heteromodal gradient consistent with increased functional integration between sensory and higher order networks. This was mirrored in a traditional functional connectivity analysis, which showed increased connectivity between the visual and default mode networks in the hallucinating group. Together, these results suggest a route by which higher-order regions may have excessive influence over earlier sensory processes, as proposed by theoretical models of hallucinations across disorders. By contrast, the t-SNE analysis identified distinct alterations in prefrontal regions, suggesting an additional layer of complexity in the functional brain network abnormalities implicated in hallucinations, which was not apparent in traditional functional connectivity analyses. Together, the results confirm abnormal brain organization associated with the hallucinating phenotype in Parkinson's disease and highlight the utility of applying convergent dimensionality reduction techniques to investigate complex clinical symptoms. In addition, the patterns we describe in Parkinson's disease converge with those seen in other conditions, suggesting that reduced hierarchical differentiation across sensory-perceptual systems may be a common transdiagnostic vulnerability in neuropsychiatric disorders with perceptual disturbances.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doença de Parkinson Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doença de Parkinson Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article