Your browser doesn't support javascript.
loading
Efficient degradation of formaldehyde based on DFT-screened metal-doped C3N6 monolayer photocatalysts: performance evaluation and mechanistic insights.
Chen, Mengshan; Wang, Haijian; Wang, Jinhu; Sun, Mingyuzhi; Hu, Yaxuan; Zhao, Xue; Zhou, Yingtang.
Afiliação
  • Chen M; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Canter for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China. zhouyingtang@zjou.edu.cn.
  • Wang H; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Canter for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China. zhouyingtang@zjou.edu.cn.
  • Wang J; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Canter for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China. zhouyingtang@zjou.edu.cn.
  • Sun M; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Canter for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China. zhouyingtang@zjou.edu.cn.
  • Hu Y; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Canter for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China. zhouyingtang@zjou.edu.cn.
  • Zhao X; Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650000, China.
  • Zhou Y; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Canter for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China. zhouyingtang@zjou.edu.cn.
Phys Chem Chem Phys ; 25(37): 25353-25360, 2023 Sep 27.
Article em En | MEDLINE | ID: mdl-37703044
ABSTRACT
Photocatalytic oxidation is an efficient and promising technology for reducing indoor pollution levels of formaldehyde (HCHO). However, developing efficient and low-cost photocatalysts for the removal of HCHO remains challenging due to the time-consuming and expensive nature of traditional "trial and error" and "directed research" approaches. To achieve this goal, first-principles density functional theory (DFT) calculations were conducted to high-throughput screen candidate TM-C3N6 photocatalysts for high-performance degradation of HCHO. The results revealed that Zr-C3N6 and Hf-C3N6 in functionalizing C3N6 with 28 transition metals showed excellent adsorption energy of HCHO, boosting the highly effective capture of HCHO. Meanwhile, an excellent adsorption performance mechanism was further elicited by the electric structure-property relationship. In addition, reaction mechanisms for HCHO degradation and three potential reaction pathways for HCHO degradation were systematically evaluated. Our findings indicated that hydroxyl-assisted dehydrogenation and oxygen-assisted dehydrogenation are the most favorable pathways, with rate-limiting steps involving the formation of ˙OH and ˙O radicals. Overall, this study may provide new insights into a high-throughput screening of novel photocatalysts that are both high-performing and low-cost for the removal of formaldehyde. This, in turn, can accelerate the experimental development process and reduce the associated costs and time consumption.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article