Your browser doesn't support javascript.
loading
Exploring Highly Efficient Broadband Self-Trapped-Exciton Luminophors: from 0D to 3D Materials.
Stroyuk, Oleksandr; Raievska, Oleksandra; Zahn, Dietrich R T; Brabec, Christoph J.
Afiliação
  • Stroyuk O; Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN), Forschungszentrum Jülich GmbH, 91058, Erlangen, Germany.
  • Raievska O; Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN), Forschungszentrum Jülich GmbH, 91058, Erlangen, Germany.
  • Zahn DRT; Semiconductor Physics, Chemnitz University of Technology, 09107, Chemnitz, Germany.
  • Brabec CJ; Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09107, Chemnitz, Germany.
Chem Rec ; 24(2): e202300241, 2024 Feb.
Article em En | MEDLINE | ID: mdl-37728189
The review summarizes our recent reports on brightly-emitting materials with varied dimensionality (3D, 2D, 0D) synthesized using "green" chemistry and exhibiting highly efficient photoluminescence (PL) originating from self-trapped exciton (STE) states. The discussion starts with 0D emitters, in particular, ternary indium-based colloidal quantum dots, continues with 2D materials, focusing on single-layer polyheptazine carbon nitride, and further evolves to 3D luminophores, the latter exemplified by lead-free double halide perovskites. The review shows the broadband STE PL to be an inherent feature of many materials produced in mild conditions by "green" chemistry, outlining PL features general for these STE emitters and differences in their photophysical properties. The review is concluded with an outlook on the challenges in the field of STE PL emission and the most promising venues for future research.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article