Your browser doesn't support javascript.
loading
HAHNet: a convolutional neural network for HER2 status classification of breast cancer.
Wang, Jiahao; Zhu, Xiaodong; Chen, Kai; Hao, Lei; Liu, Yuanning.
Afiliação
  • Wang J; College of Software, Jilin University, Changchun, 130012, China.
  • Zhu X; Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, China.
  • Chen K; College of Software, Jilin University, Changchun, 130012, China.
  • Hao L; Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, China.
  • Liu Y; College of Computer Science and Technology, Jilin University, Changchun, 130012, China.
BMC Bioinformatics ; 24(1): 353, 2023 Sep 20.
Article em En | MEDLINE | ID: mdl-37730567
OBJECTIVE: Breast cancer is a significant health issue for women, and human epidermal growth factor receptor-2 (HER2) plays a crucial role as a vital prognostic and predictive factor. The HER2 status is essential for formulating effective treatment plans for breast cancer. However, the assessment of HER2 status using immunohistochemistry (IHC) is time-consuming and costly. Existing computational methods for evaluating HER2 status have limitations and lack sufficient accuracy. Therefore, there is an urgent need for an improved computational method to better assess HER2 status, which holds significant importance in saving lives and alleviating the burden on pathologists. RESULTS: This paper analyzes the characteristics of histological images of breast cancer and proposes a neural network model named HAHNet that combines multi-scale features with attention mechanisms for HER2 status classification. HAHNet directly classifies the HER2 status from hematoxylin and eosin (H&E) stained histological images, reducing additional costs. It achieves superior performance compared to other computational methods. CONCLUSIONS: According to our experimental results, the proposed HAHNet achieved high performance in classifying the HER2 status of breast cancer using only H&E stained samples. It can be applied in case classification, benefiting the work of pathologists and potentially helping more breast cancer patients.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Mama Tipo de estudo: Prognostic_studies Limite: Female / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Mama Tipo de estudo: Prognostic_studies Limite: Female / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article