Your browser doesn't support javascript.
loading
Stakes of neuromorphic foveation: a promising future for embedded event cameras.
Gruel, Amélie; Hareb, Dalia; Grimaldi, Antoine; Martinet, Jean; Perrinet, Laurent; Linares-Barranco, Bernabé; Serrano-Gotarredona, Teresa.
Afiliação
  • Gruel A; SPARKS, Université Côte d'Azur, CNRS, I3S, 2000 Rte des Lucioles, 06900, Sophia-Antipolis, France. amelie.gruel@univ-cotedazur.fr.
  • Hareb D; SPARKS, Université Côte d'Azur, CNRS, I3S, 2000 Rte des Lucioles, 06900, Sophia-Antipolis, France.
  • Grimaldi A; NeOpTo, Université Aix Marseille, CNRS, INT, 27 Bd Jean Moulin, 13005, Marseille, France.
  • Martinet J; SPARKS, Université Côte d'Azur, CNRS, I3S, 2000 Rte des Lucioles, 06900, Sophia-Antipolis, France.
  • Perrinet L; NeOpTo, Université Aix Marseille, CNRS, INT, 27 Bd Jean Moulin, 13005, Marseille, France.
  • Linares-Barranco B; Neuromorphic Group, Instituto de Microelectrónica de Sevilla IMSE-CNM, 28. Parque Científico y Tecnológico Cartuja, 41092, Sevilla, Spain.
  • Serrano-Gotarredona T; Neuromorphic Group, Instituto de Microelectrónica de Sevilla IMSE-CNM, 28. Parque Científico y Tecnológico Cartuja, 41092, Sevilla, Spain.
Biol Cybern ; 117(4-5): 389-406, 2023 10.
Article em En | MEDLINE | ID: mdl-37733033
Foveation can be defined as the organic action of directing the gaze towards a visual region of interest to acquire relevant information selectively. With the recent advent of event cameras, we believe that taking advantage of this visual neuroscience mechanism would greatly improve the efficiency of event data processing. Indeed, applying foveation to event data would allow to comprehend the visual scene while significantly reducing the amount of raw data to handle. In this respect, we demonstrate the stakes of neuromorphic foveation theoretically and empirically across several computer vision tasks, namely semantic segmentation and classification. We show that foveated event data have a significantly better trade-off between quantity and quality of the information conveyed than high- or low-resolution event data. Furthermore, this compromise extends even over fragmented datasets. Our code is publicly available online at: https://github.com/amygruel/FoveationStakes_DVS .
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Visão Ocular / Computadores Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Visão Ocular / Computadores Idioma: En Ano de publicação: 2023 Tipo de documento: Article