Your browser doesn't support javascript.
loading
Detection of Bacterial Colonization in Lung Transplant Recipients Using an Electronic Nose.
Wijbenga, Nynke; de Jong, Nadine L A; Hoek, Rogier A S; Mathot, Bas J; Seghers, Leonard; Aerts, Joachim G J V; Bos, Daniel; Manintveld, Olivier C; Hellemons, Merel E.
Afiliação
  • Wijbenga N; Department of Respiratory Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands.
  • de Jong NLA; Erasmus Medical Center Transplant Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands.
  • Hoek RAS; Department of Respiratory Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands.
  • Mathot BJ; Erasmus Medical Center Transplant Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands.
  • Seghers L; Educational Program Technical Medicine, Leiden University Medical Center, Delft University of Technology and Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands.
  • Aerts JGJV; Department of Respiratory Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands.
  • Bos D; Erasmus Medical Center Transplant Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands.
  • Manintveld OC; Department of Respiratory Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands.
  • Hellemons ME; Erasmus Medical Center Transplant Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands.
Transplant Direct ; 9(10): e1533, 2023 Oct.
Article em En | MEDLINE | ID: mdl-37745948
ABSTRACT

Background:

Bacterial colonization (BC) of the lower airways is common in lung transplant recipients (LTRs) and increases the risk of chronic lung allograft dysfunction. Diagnosis often requires bronchoscopy. Exhaled breath analysis using electronic nose (eNose) technology may noninvasively detect BC in LTRs. Therefore, we aimed to assess the diagnostic accuracy of an eNose to detect BC in LTRs.

Methods:

We performed a cross-sectional analysis within a prospective, single-center cohort study assessing the diagnostic accuracy of detecting BC using eNose technology in LTRs. In the outpatient clinic, consecutive LTR eNose measurements were collected. We assessed and classified the eNose measurements for the presence of BC. Using supervised machine learning, the diagnostic accuracy of eNose for BC was assessed in a random training and validation set. Model performance was evaluated using receiver operating characteristic analysis.

Results:

In total, 161 LTRs were included with 80 exclusions because of various reasons. Of the remaining 81 patients, 16 (20%) were classified as BC and 65 (80%) as non-BC. eNose-based classification of patients with and without BC provided an area under the curve of 0.82 in the training set and 0.97 in the validation set.

Conclusions:

Exhaled breath analysis using eNose technology has the potential to noninvasively detect BC.

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article