MAE-Based Self-Supervised Pretraining Algorithm for Heart Rate Estimation of Radar Signals.
Sensors (Basel)
; 23(18)2023 Sep 13.
Article
em En
| MEDLINE
| ID: mdl-37765926
Noncontact heart rate monitoring techniques based on millimeter-wave radar have advantages in unique medical scenarios. However, the accuracy of the existing noncontact heart rate estimation methods is still limited by interference, such as DC offsets, respiratory harmonics, and environmental noise. Additionally, these methods still require longer observation times. Most deep learning methods related to heart rate estimation still need to collect more heart rate marker data for training. To address the above problems, this paper introduces a radar signal-based heart rate estimation network named the "masked phase autoencoders with a vision transformer network" (MVN). This network is grounded on masked autoencoders (MAEs) for self-supervised pretraining and a vision transformer (ViT) for transfer learning. During the phase preprocessing stage, phase differencing and interpolation smoothing are performed on the input phase signal. In the self-supervised pretraining step, masked self-supervised training is performed on the phase signal using the MAE network. In the transfer learning stage, the encoder segment of the MAE network is integrated with the ViT network to enable transfer learning using labeled heart rate data. The innovative MVN offers a dual advantage-it not only reduces the cost associated with heart rate data acquisition but also adeptly addresses the issue of respiratory harmonic interference, which is an improvement over conventional signal processing methods. The experimental results show that the process in this paper improves the accuracy of heart rate estimation while reducing the requisite observation time.
Texto completo:
1
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article