Your browser doesn't support javascript.
loading
Ketogenesis promotes tolerance to Pseudomonas aeruginosa pulmonary infection.
Tomlinson, Kira L; Chen, Ying-Tsun; Junker, Alex; Urso, AndreaCarola; Wong Fok Lung, Tania; Ahn, Danielle; Hofstaedter, Casey E; Baskota, Swikrity U; Ernst, Robert K; Prince, Alice; Riquelme, Sebastián A.
Afiliação
  • Tomlinson KL; Department of Pediatrics, Columbia University, New York, NY 10032, USA.
  • Chen YT; Department of Pediatrics, Columbia University, New York, NY 10032, USA.
  • Junker A; Department of Pediatrics, Columbia University, New York, NY 10032, USA.
  • Urso A; Department of Pediatrics, Columbia University, New York, NY 10032, USA.
  • Wong Fok Lung T; Department of Pediatrics, Columbia University, New York, NY 10032, USA.
  • Ahn D; Department of Pediatrics, Columbia University, New York, NY 10032, USA.
  • Hofstaedter CE; Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA.
  • Baskota SU; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
  • Ernst RK; Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA.
  • Prince A; Department of Pediatrics, Columbia University, New York, NY 10032, USA.
  • Riquelme SA; Department of Pediatrics, Columbia University, New York, NY 10032, USA. Electronic address: sr3302@cumc.columbia.edu.
Cell Metab ; 35(10): 1767-1781.e6, 2023 10 03.
Article em En | MEDLINE | ID: mdl-37793346
ABSTRACT
Pseudomonas aeruginosa is a common cause of pulmonary infection. As a Gram-negative pathogen, it can initiate a brisk and highly destructive inflammatory response; however, most hosts become tolerant to the bacterial burden, developing chronic infection. Using a murine model of pneumonia, we demonstrate that this shift from inflammation to disease tolerance is promoted by ketogenesis. In response to pulmonary infection, ketone bodies are generated in the liver and circulate to the lungs where they impose selection for P. aeruginosa strains unable to display surface lipopolysaccharide (LPS). Such keto-adapted LPS strains fail to activate glycolysis and tissue-damaging cytokines and, instead, facilitate mitochondrial catabolism of fats and oxidative phosphorylation (OXPHOS), which maintains airway homeostasis. Within the lung, P. aeruginosa exploits the host immunometabolite itaconate to further stimulate ketogenesis. This environment enables host-P. aeruginosa coexistence, supporting both pathoadaptive changes in the bacteria and the maintenance of respiratory integrity via OXPHOS.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pseudomonas aeruginosa / Lipopolissacarídeos Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pseudomonas aeruginosa / Lipopolissacarídeos Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article